Dependency Injection

For dummies

-
Solutions ¢
A Software Revolution

Who am 17

= | uis Majano - Computer Engineer
®» Bornin El Salvador -=-=-=-=====-=----
» President of Ortus Solutions

= Manager of the IECFUG
(Www.iecfug.com)

= Creator of ColdBox, MockBox,
LogBox, CacheBox, WireBox,
ContentBox, or anything Box!

x Documentation Lover!
Don’t be a hater!

Solutions

A Software Revolution

-

Tuesday, June 18, 13

http://www.iecfug.com
http://www.iecfug.com

What we will cover?

= \WVhat is Dependency Injection (Dl)

= \\Vhy DI?
x D] Evolution
D] Basics

® |mplementations

Tuesday, June 18, 13

What is the problem? ®

Do you have a problem in your life? -ﬁ No.

Then don't worry.

™\
N

Can you do something about it?%

DD M 44

Tuesday, June 18, 13

@ What is the problem?

A g B g G ERE D)

= \\e are now working with-lots of objects!

= An object may depend on other objects

= [hese objects might also depend on other objects
= An object without its dependencies cannot function

= This composite system -> Object Graph

Tuesday, June 18, 13

@ What is the problem?

AL e B R O SR T

= Start by seeing objects as services
= An object is a client (dependency,dependent) of another object
» Objects have identity and responsibilities to accomplish specific tasks

= Modeling = Decompose services/functionality into object

DI = Reliably + Efficiently building object graphs, strategies and patterns.

Tuesday, June 18, 13

PRE-DI Evolution o

© 2008 cartertoons.com

Tuesday, June 18, 13

© PRE-DI Evolution 2

PRE-DI Evolution ©

What if those . .
How do | test this? dependencies have more What if this has more

dependencies?

What if | need this in

How do | change
another object?

Languages”

Getting Confused?

Tuesday, June 18, 13

-
-
—
-
—

© PRE-DI Evolution O

English Spanish
Spell Spell Spell
Checker Checker Checker

VW ERIE] Constructor/Setter

Tuesday, June 18, 13

© PRE-DI Evolution ®

What about my
instance data?

What if this has more
dependencies?

on init(ISpellChecker checke
spe hecker = arguments.checker;
cacheData = {};
return this;

} What if | need this in
another object?

component {
function init (2§
cacheData 3 {};
return this;
}
function g tSpellChecker(ISpellChecker checker)/{
variakl es.spellChecker = arguments.checker;

}

| can change Who creates checker? Dang it! More
Problems!

-

Tuesday, June 18, 13

© PRE-DI Evolution ©

» Pros:

x \\e can test Eggglslh S[;&I;réiﬁh

Checker Checker

= \\Ve can use different spell checkers
x Cons: Constructor/Setter

= Up to you to builld dependencies
= Need to know the entire object graph of every-object
» Use object in other locations (NOT DRY)

= Violates encapsulation

Tuesday, June 18, 13

\‘/ Mr Smarty Pants >

Tuesday, June 18, 13

© DI Evolution -

Client Requests ! Build ObjectX
Spell Spell Spell
Checker Checker Checker
W ETIE] Via Constructor Factory Patterns

Tuesday, June 18, 13

| . !) P Clean Separation of
Can cnange construction code

languages!

component {
function init(ISpellChecker checke)
spellChecker = arguments.checkeir;
cacheData = {};
return this;

}

component name="EditorFactory”{
function init(MailerFactory mailerFactory){

variables.mailerFactory = arguments.mailerFactory;

return this;
}
function Editor newEnglishEditor()/{

var e = new Editor(new EnglishSpellChecker ()
e.setAddressBook(new AddressBook());

e.setMailer(mailerFactory.newEnglishMailer());

return ej;

}

function Editor newSpanishEditor()/{

var e = new Editor(new SpanishSpellChecker());
e.setAddressBook(new AddressBook());

e.setMailer(mailerFactory.newSpanishMailer());
return e;

Dang it! More ditor newGermanEditor(){}
Problems!

Tuesday, June 18, 13

All clients need
factories?

Who builds the
factory?

What about
persistence”

Creation
gets verbose for new
variations

How many factories
do | need?

N ad

© PRE-DI Evolution ©

= Pros:
x Factory creates and assembles objects

» [he client code remains clean and cohesive
Factory
= No more repetitive code, we have achieved reusability

x Encapsulation is maintained as client'no-longer build
objects but request them

x Cons:

x Our Factory becomes difficult to test as Editors are
created and recreated

x Persistence is not achieved
x [he factory must exist in-every client that needs it

x [he factory must implement every variation of what it
produces

x [he factory code will get messy and repetitive over time

Tuesday, June 18, 13

Tuesday, June 18, 13

© DI Evolution ©

- ’ Client Requests Build ObjectX
Spell
Checker

Spell Spell
Checker Checker

Manual Via Constructor Custom Object Factory

Depen

Tuesday, June 18, 13

. ®
Inversion Of Control

““An abstract principle describing an aspect of some software architecture designs in which
the flow of control of a system is inverted in comparison to procedural programming.” -
Wikipedia

= A principle
x Common characteristic of frameworks
x \What is Dependency Injection inverting?

x Any other patterns that invert?

Tuesday, June 18, 13

O
Dependency Injection

‘““Dependency injection (DI) in object-oriented computer programming is a technique that indicates
to a part of a program which other parts it can use, i.e. to supply an external dependency, or
reference, to a software component.” - Wikipedia

= A design pattern that applies 10C principles
= |nverts the responsibility-of creating, - assembling and wiring objects where needed
x DRY

Tuesday, June 18, 13

DIl Benefits

o
'.-

»x Best parts of the evolution

| casual Friday for Hha
» [estability and Mockability (Yes, that’s a word!) f Telecommuter

x (Gan enable object state or persistence
x | .oose Coupling
x Objects don’t know apbout their-dependencies
x Easily switch dependencies
x DRY principles
x Removes code clutter and write less boilerplate code

x Ability to- dynamically influence objects: AOP, Mixins, More

Applications become tolerant to rapid structural and behavioral change

Tuesday, June 18, 13

x |nstead of pulling your dependencies in, you opt to receive them
from someplace and you don’t care where they come from.

x |nstead of pull you push

x Hollywood principle -> loC = Inversion of Control

Don’t call us; we’ll call you!

Tuesday, June 18, 13

& DI Golden Rule #2

Your objects are
W=

createObject/new() Is evil

Annotated
Code

Configuration
XML or
Programmatic

Class
Introspection

Application

Tuesday, June 18, 13

TN

{2 DI Basics .

= Ask Injector for objects by named keys
= |njector manages object persistence for you ->-Scoping
»x Dependency Discovery

» [ntrospection (Annotations+Methods+Arguments)

» Configuration (XML or Programmatic)

» |njector Autowires = Automatic resolving and injecting of dependencies
»x Dependency Injection ldioms:
» Constructor arguments

x Setters/Methods
x Mixins (CFProperty)

Tuesday, June 18, 13

W DI IDIOMS

// Constructor
function init(service){
variables.service = arguments.service;

return init;

// Setters

function setService(service) inject="service”{
variables.service = arguments.service;

// CF Property Injection

property name=*“service” inject;

property name=“service” inject="id:CoolService”;
property name=“log” inject="logbox:logger:{this}”;

Tuesday, June 18, 13

a . . o
2 Circular Dependencies

»x [woO objects depend on each other
» Refer to the same instances of each other

= Constructor injection Is not possible (maybe)

Tuesday, June 18, 13

What is WireBox? >

“A next generation conventions based dependency injection
and AOP framework for ColdFusion”

WIRE

By ColdBoX

0 8 0 0 9 8 0%3°+%5°0%0°9°5°9°0°6°°0°0 0% 0% 08 00 0 s s s 0 a0 0 00

“‘Bulld objects the I\/IACHO vvay"’

Tuesday, June 18, 13

Features s

= Documentation & Professional Services

= Annotation driven DI

= O configuration or programmatic configuration mode (NO XML)
= More than CECs

= Persistence scopes: singleton; session, request, cache, etc.

= |ntegrated logging and debugging

/
= Object Lite Cycle Events
Application
= Automatic CF Scope registration Scope

Tuesday, June 18, 13

WireBox Universe

AOP...

WireBox Injector

x (Creates and wires all objects for you

x getinstance(‘named key or path’)

injector = new wirebox.system.ioc.Injector();
injector = new wirebox.system.ioc.Injector (binder="path.to.Binder”,

properties={propl=vall,prop2=val2});

obj = injector.getInstance(“model.path.Service”);

obj2 = injector.getInstance(“NamedKey”) ;

Tuesday, June 18, 13

Tuesday, June 18, 13

Creation Styles

getlnstance

Implicit Mappings

('‘path.to.object") f

getlnstance
('MyService')

path.to.object

Explicit Mappings

getinstance
('MyService')

£ Scan 1} § sScan
Location # Location @

Scan
Location
2

Scan Locations

Configuration Binder ©

T
— ', sz 2 S|mp| e CFC
f = — x Configure()
= Define WireBox Settings

x - Define Object-Mappings
x -~ Mapping DSL

component extends="wirebox.system.ioc.config.Binder”{

configure(){

}

Tuesday, June 18, 13

¢t@m Mapping DSL

= Used by concatenating calls to itself, returns:the binder-always
= \ery readable bursts of logic:

= map(“Luis”).todJava(“cool.Java.App?”).into(this.SCOPES.SESSION);
= Extend it!

component extends="wirebox.system.ioc.config.Binder"”{
configure(){

map(“Luis”).toJava(“cool.java.Service")

.asSingleton()
.asEagerInit();

Tuesday, June 18, 13

More than CFECs

Description

CFC ColdFusion Component
JAVA Any Java object
WEBSERVICE Any WSDL
RSS Any RSS or Atom feed
DSL Any registered or core injection DSL string
CONSTANT Any value
FACTORY Any other mapped object

PROVIDER

A registered provider object

Tuesday, June 18, 13

// RSS Integration With Caching.

map ("googleNews")
.toRSS("http://news.google.com/news?pz=1l&ned=us&hl=en&topic=h&num=3&output=rss")

.asEagerInit()
.inCacheBox(timeout=20, lastAccessTimeout=30,provider="default",6 key="google-news");

// Java Integration with init arguments

map("Buffer").
toJava("java.lang.StringBuffer").
initArg(value="500", javaCast="1long");

// Java integration with initWith() custom arguments and your own casting.
map("Buffer").

toJava("java.lang.StringBuffer").

initWith(javaCast("long",500));

// Constant
map("MyEmail").
toConsant ("info@coldbox.org");

// Factory Methods

map("FunkyEpresso").
toFactorymethod(factory="SecurityServic" ,method="getEspresso”).
methodArg(name="funkyLevel”,value="45");

// Property injections

map("SecurityService")
.to("model.security.SecurityService")
.in(this.SCOPES.SERVER)
.property(name="userService", ref="UserService", scope="instance")
.property(name="logger", dsl="LogBox:root", scope="instance")
.property(name="cache", dsl="CacheBox:Default", scope="instance")
.property(name="maxHits", value=20, scope="instance"

Tuesday, June 18, 13

http://news.google.com/news?pz=1&ned=us&hl=en&topic=h&num=3&output=rss

What about persistence? ©

NOSCOPE Transient objects

PROTOTYPE Transient objects

SINGLETON Only one instance of the object exists
SESSION The CF Scope

REQUEST The CF Scope

APPLICATION The CF Scope

SERVER The CF Scope

CACHEBOX Time per5|sted objects in any Cache Box provider

Tuesday, June 18, 13

Q

Scoping by Mapping

// map google news
map (“GoogleNews"”)
.toRSS(“http://news.google.com/news?output=rss”)

.asEagerInit ()
.inCacheBox (timeout="30",lastAccessTimeout=10);

// Wire up java objects
map(“SecurityService”)
.toJava(“org.company.SecurityService)
.asSingleton()
.setter (name="userService” ,ref="userService”);
map (“UserService”)
.asSingleton()
.toJava(”org.company.UserService”);

// request based objects

map (“SearchCriteria”)
.to(“model.search.Criteria”)
.into(this.SCOPES.REQUEST) ;

// session based objects

map (“UserPreferences”)
.to(”model.user.Preferences”)
.into(this.SCOPES.SESSION);

Tuesday, June 18, 13

http://news.google.com/news?output=rss
http://news.google.com/news?output=rss

Q

Scoping by Annotation

component{}

component singleton{}

component scope=“session”{}
component scope=“request”{}
component 'cache cacheTimeout="30"{}

component cachebox="ehCache” cacheTimeout="30"{}

Tuesday, June 18, 13

Constructor

CFProperty

Setter/
Methods

Tuesday, June 18, 13

Mandatory dependencies for
object creation

Great documentable
approach to variable mixins

to reduce getter/setter
verbosity. Great for
visualizing object
dependencies. Safe for
circular dependencies.

Legacy or classic style

Injection Styles

Each argument receives an inject annotation
with its required injection DSL. Circular
dependencies will fail via constructor
injection unless WireBox Providers are used.

Mixin variables at runtime by using the
cfproperty annotations. Cons is that you can
not use the dependencies in an object's
constructor method.

The inject annotation MUST exist on the
setter method if the object is not mapped.
Mapping must be done if you do not have
access to the source or you do not want to
touch the source.

Dependencies, Scope, Names? s

= Documentable x Can pollute code
Annotations x Better visioility » Some call intrusive
S LSDIORVVOTRTIOWS » Unusable on compiled
x Just Metadatal! code
x Compiled/Legacy Code SHETIRE
Configuration » Fl\)ﬂetjrltcl)%j%g,? Mgl x Slower workflow
« Visible Object Map = | ower visibility

Tuesday, June 18, 13

Injection Annotation ©

= [Use one annotation: inject
x [ells the Injector what to inject
»x (Concatenated strings separated by *:”

x First section is called DSL namespace

x inject="id:MyService”; inject="coldbox:plugin:Logger”

ID-Model-Empty Mapped references by key
WireBox WireBox related objects: parent injectors, binder, properties, scopes
CacheBox CacheBox related objects: caches, cache keys, etc
Provider Object Providers
LogBox LogBox related objects: loggers, root loggers
ColdBox ColdBox related objects: interceptors, entity services, etc
Custom Your own live annotations

Tuesday, June 18, 13

Annotations

// CF Property Injection

property name=*“service” inject;

property name=“service” inject="id:CoolService”;
property name="“1log” inject="logbox:logger:{this}”;

// Constructor

function init(service inject) {
variables.service = arguments.service;
return init;

}

// Setter
function setService(service) inject{
variables.service = arguments.service;

Tuesday, June 18, 13

CFC Annotations ~ ©

x @autowire = boolean [true]

»x @alias = list of know names for this CFC

x @eagerlnit [false]

x @threadSafe [false]

x @scope = valid scope

x @singleton

x @cachebox = cache provider [default]

x @cache [default]

» @cacheTimeout = minutes

x @cachelLastAccessTimeout = minutes
x @parent = parent 1D

x @mixins = A list of UDF templates to mixin

Tuesday, June 18, 13

@) Event Model .

x Announce events throughout injector and object life cycles

x Create simple CEC listeners or enhanced ColdBox interceptors
x Modify CECs, metadata; etc

x Extend WireBox-CacheBox YOUR WAY!

component {

configure(injector,properties){}

afterInstanceCreation(interceptData){
var target = arguments.interceptData.target;

target.$Sformatdate = variables.formatDate;

}

function formatDate(){}

Tuesday, June 18, 13

%:a) Source Code

= |f you are a source junky and want to help out:
= Nttps://qithub.com/ColdBox/coldbox-platform

@ Issues & Mailing List

= Bugs, enhancements, ideas:

» Nitps://ortussolutions.atlassian.net/browse/WIREBOX

= http://groups.google.com/group/coldbox

Tuesday, June 18, 13

https://github.com/ColdBox/coldbox-relax
https://github.com/ColdBox/coldbox-relax
https://github.com/coldbox/coldbox-relax/issues
https://github.com/coldbox/coldbox-relax/issues
http://groups.google.com/group/coldbox
http://groups.google.com/group/coldbox

Q&A

1 hanks!

