
Dependency Injection
For dummies

Tuesday, June 18, 13

Who am I?
Luis Majano - Computer Engineer

Born in El Salvador ------------------>

President of Ortus Solutions

Manager of the IECFUG
(www.iecfug.com)

Creator of ColdBox, MockBox,
LogBox, CacheBox, WireBox,
ContentBox, or anything Box!

Documentation Lover!
Don’t be a hater!

Tuesday, June 18, 13

http://www.iecfug.com
http://www.iecfug.com

What we will cover?

What is Dependency Injection (DI)

Why DI?

DI Evolution

DI Basics

Implementations

Tuesday, June 18, 13

What is the problem?

Tuesday, June 18, 13

What is the problem?

We are now working with lots of objects!
An object may depend on other objects
These objects might also depend on other objects
An object without its dependencies cannot function
This composite system -> Object Graph

A B C D

Tuesday, June 18, 13

What is the problem?

Start by seeing objects as services
An object is a client (dependency,dependent) of another object
Objects have identity and responsibilities to accomplish specific tasks
Modeling = Decompose services/functionality into object

A B C D

DI = Reliably + Efficiently building object graphs, strategies and patterns.

Tuesday, June 18, 13

PRE-DI Evolution

Tuesday, June 18, 13

Editor

Spell
Checker

Manual

PRE-DI Evolution

Tuesday, June 18, 13

component{
! function init(){
! ! variables.spellChecker = new SpellChecker();!
! }!
}

How do I change
Languages? How do I isolate it?

What if I need this in
another object?

What if this has more
dependencies?

What if those
dependencies have more

dependencies?

Getting Confused?

PRE-DI Evolution
How do I test this?

Tuesday, June 18, 13

Editor

Spell
Checker

Manual

Editor

English
Spell

Checker

Spanish
Spell

Checker

Constructor/Setter

PRE-DI Evolution

Tuesday, June 18, 13

component{
function init(ISpellChecker checker){

spellChecker = arguments.checker;
cacheData = {};
return this;!

}!
}

component{
function init(){

cacheData = {};!
return this;

}
function setSpellChecker(ISpellChecker checker){

variables.spellChecker = arguments.checker;
}!

}

Editor

English
Spell

Checker

Spanish
Spell

Checker

I can change
languages!

Who creates checker?

What if I need this in
another object?

What if this has more
dependencies?

What about my
instance data?

Dang it! More
Problems!

PRE-DI Evolution

Tuesday, June 18, 13

PRE-DI Evolution
Editor

English
Spell

Checker

Spanish
Spell

Checker

Constructor/Setter

Pros:
We can test
We can use different spell checkers

Cons:
Up to you to build dependencies
Need to know the entire object graph of every object
Use object in other locations (NOT DRY)
Violates encapsulation

Tuesday, June 18, 13

Mr Smarty Pants

Tuesday, June 18, 13

DI Evolution
Editor

Spell
Checker

Manual

Editor

English
Spell

Checker

Spanish
Spell

Checker

Via Constructor

Client Factory ObjectXBuildRequests

Factory Patterns

Tuesday, June 18, 13

component{
function init(ISpellChecker checker){

spellChecker = arguments.checker;
cacheData = {};
return this;!

}!
}

component name=”EditorFactory”{
function init(MailerFactory mailerFactory){

variables.mailerFactory = arguments.mailerFactory;
return this;

}
function Editor newEnglishEditor(){

var e = new Editor(new EnglishSpellChecker());
e.setAddressBook(new AddressBook());
e.setMailer(mailerFactory.newEnglishMailer());
return e;

}
function Editor newSpanishEditor(){
var e = new Editor(new SpanishSpellChecker());
e.setAddressBook(new AddressBook());
e.setMailer(mailerFactory.newSpanishMailer());
return e;

}
function Editor newGermanEditor(){}!

}

PRE-DI EvolutionI can change
languages!

Clean Separation of
construction code

How many factories
do I need?

All clients need
factories?

Who builds the
factory?

Creation
gets verbose for new

variations

Dang it! More
Problems!

What about
persistence?

Tuesday, June 18, 13

PRE-DI Evolution
Pros:

Factory creates and assembles objects
The client code remains clean and cohesive
No more repetitive code, we have achieved reusability
Encapsulation is maintained as client no longer build
objects but request them

Cons:
Our Factory becomes difficult to test as Editors are
created and recreated
Persistence is not achieved
The factory must exist in every client that needs it
The factory must implement every variation of what it
produces
The factory code will get messy and repetitive over time

Client Factory ObjectXBuildRequests

Factory

Tuesday, June 18, 13

Embrace DI

Tuesday, June 18, 13

DI Evolution
Editor

Spell
Checker

Manual

Editor

English
Spell

Checker

Spanish
Spell

Checker

Via Constructor

Client Factory ObjectXBuildRequests

Custom Object Factory

Injector

Client

produces

Object X
With

dependencies
with

Dependency Injection

NOT A SILVER
BULLET, BUT

ALMOST!

Tuesday, June 18, 13

Inversion Of Control

A principle
Common characteristic of frameworks
What is Dependency Injection inverting?
Any other patterns that invert?

“An	 abstract	 principle	 describing	 an	 aspect	 of	 some	 software	 architecture	 designs	 in	 which	
the	 flow	 of	 control	 of	 a	 system	 is	 inverted	 in	 comparison	 to	 procedural	 programming.”	 –	

Wikipedia

Tuesday, June 18, 13

Dependency Injection

A design pattern that applies IoC principles
Inverts the responsibility of creating, assembling and wiring objects where needed
DRY

“Dependency	 injection	 (DI)	 in	 object-‐oriented	 computer	 programming	 is	 a	 technique	 that	 indicates	
to	 a	 part	 of	 a	 program	 which	 other	 parts	 it	 can	 use,	 i.e.	 to	 supply	 an	 external	 dependency,	 or	

reference,	 to	 a	 software	 component.”	 -‐	 Wikipedia

Tuesday, June 18, 13

DI Benefits
Best parts of the evolution
Testability and Mockability (Yes, that’s a word!)
Can enable object state or persistence
Loose Coupling

Objects don’t know about their dependencies
Easily switch dependencies

DRY principles
Removes code clutter and write less boilerplate code
Ability to dynamically influence objects: AOP, Mixins, More

Applications become tolerant to rapid structural and behavioral change

Tuesday, June 18, 13

DI Golden Rule #1
Instead of pulling your dependencies in, you opt to receive them
from someplace and you don’t care where they come from.
Instead of pull you push
Hollywood principle -> IoC = Inversion of Control

Don’t call us; we’ll call you!

Tuesday, June 18, 13

Your objects are
MINE!!

DI Golden Rule #2

createObject/new() is evil
Tuesday, June 18, 13

DI Universe

Injector)

Annotated)
Code)

Class)
Introspection)

Application)

Configuration)
XML)or)

Programmatic)

Tuesday, June 18, 13

DI Basics

Ask Injector for objects by named keys
Injector manages object persistence for you -> Scoping
Dependency Discovery

Introspection (Annotations+Methods+Arguments)
Configuration (XML or Programmatic)

Injector Autowires = Automatic resolving and injecting of dependencies
Dependency Injection Idioms:

Constructor arguments
Setters/Methods
Mixins (CFProperty) Injector)

Annotated)
Code)

Class)
Introspection)

Application)

Configuration)
XML)or)

Programmatic)

Tuesday, June 18, 13

DI IDIOMS
// Constructor
function init(service){
 variables.service = arguments.service;
 return init;
}

// CF Property Injection
property name=“service” inject;
property name=“service” inject=”id:CoolService”;
property name=“log” inject=”logbox:logger:{this}”;

// Setters
function setService(service) inject=”service”{
 variables.service = arguments.service;
}

Tuesday, June 18, 13

Circular Dependencies

Two objects depend on each other
Refer to the same instances of each other
Constructor injection is not possible (maybe)

Host Symbiote A

B

C

Tuesday, June 18, 13

What is WireBox?
“A next generation conventions based dependency injection

and AOP framework for ColdFusion”

“Build objects the MACHO way!”
Tuesday, June 18, 13

Features
Documentation & Professional Services

Annotation driven DI

0 configuration or programmatic configuration mode (NO XML)

More than CFCs

Persistence scopes: singleton, session, request, cache, etc.

Integrated logging and debugging

Object Life Cycle Events

Automatic CF Scope registration
Application*

Scope*

Injector*

Tuesday, June 18, 13

WireBox Universe

Injector)

Scopes)

Binder)

LogBox)

DSL)
Builders)

Parent)
Injector)

Events)

AOP

Tuesday, June 18, 13

WireBox Injector

Creates and wires all objects for you
getInstance(‘named key or path’)

injector = new wirebox.system.ioc.Injector();
injector = new wirebox.system.ioc.Injector(binder=”path.to.Binder”,

properties={prop1=val1,prop2=val2});

obj = injector.getInstance(“model.path.Service”);

obj2 = injector.getInstance(“NamedKey”);

Tuesday, June 18, 13

Creation Styles

Explicit Mappings

getInstance
('path.to.object')

path.to.object

createObject()

getInstance
('MyService')

path.to.object

Binder

Lookup Key

Create Resolved Path

Implicit Mappings Scan Locations

getInstance
('MyService')

Scan
Location

1

Scan
Location

2

Scan
Location

3

scan

scan

scan

Tuesday, June 18, 13

Configuration Binder

Simple CFC
Configure()

Define WireBox Settings
Define Object Mappings

Mapping DSL

component extends=”wirebox.system.ioc.config.Binder”{

configure(){

}
}

Tuesday, June 18, 13

Mapping DSL
Used by concatenating calls to itself, returns the binder always
Very readable bursts of logic:

map(“Luis”).toJava(“cool.Java.App”).into(this.SCOPES.SESSION);
Extend it!

component extends=”wirebox.system.ioc.config.Binder”{

configure(){

map(“Luis”).toJava(“cool.java.Service”)
 .asSingleton()
 .asEagerInit();

}

}

Tuesday, June 18, 13

More than CFCs
Type Description

CFC ColdFusion Component

JAVA Any Java object

WEBSERVICE Any WSDL

RSS Any RSS or Atom feed

DSL Any registered or core injection DSL string

CONSTANT Any value

FACTORY Any other mapped object

PROVIDER A registered provider object

Tuesday, June 18, 13

// RSS Integration With Caching.
map("googleNews")
! .toRSS("http://news.google.com/news?pz=1&ned=us&hl=en&topic=h&num=3&output=rss")
! .asEagerInit()
! .inCacheBox(timeout=20,lastAccessTimeout=30,provider="default",key="google-news");

// Java Integration with init arguments
map("Buffer").
! toJava("java.lang.StringBuffer").
! initArg(value="500",javaCast="long");
!
// Java integration with initWith() custom arguments and your own casting.
map("Buffer").
! toJava("java.lang.StringBuffer").
! initWith(javaCast("long",500));

// Constant
map("MyEmail").
! toConsant("info@coldbox.org");

// Factory Methods
map("FunkyEpresso").
! toFactorymethod(factory="SecurityServic",method=”getEspresso”).
! methodArg(name=”funkyLevel”,value=”45”);

// Property injections
map("SecurityService")
! .to("model.security.SecurityService")
! .in(this.SCOPES.SERVER)
! .property(name="userService", ref="UserService", scope="instance")
! .property(name="logger", dsl="LogBox:root", scope="instance")
! .property(name="cache", dsl="CacheBox:Default", scope="instance")
! .property(name="maxHits", value=20, scope="instance"

Tuesday, June 18, 13

http://news.google.com/news?pz=1&ned=us&hl=en&topic=h&num=3&output=rss

What about persistence?

Tuesday, June 18, 13

Scoping by Mapping
// map google news
map(“GoogleNews”)

.toRSS(“http://news.google.com/news?output=rss”)

.asEagerInit()

.inCacheBox(timeout=”30”,lastAccessTimeout=10);

// Wire up java objects
map(“SecurityService”)

.toJava(“org.company.SecurityService)

.asSingleton()

.setter(name=”userService”,ref=”userService”);
map(“UserService”)

.asSingleton()

.toJava(“org.company.UserService”);

// request based objects
map(“SearchCriteria”)

.to(“model.search.Criteria”)

.into(this.SCOPES.REQUEST);

// session based objects
map(“UserPreferences”)

.to(“model.user.Preferences”)

.into(this.SCOPES.SESSION);

Tuesday, June 18, 13

http://news.google.com/news?output=rss
http://news.google.com/news?output=rss

Scoping by Annotation

component{}

component singleton{}

component scope=”session”{}

component scope=”request”{}

component cache cacheTimeout=”30”{}

component cachebox=”ehCache” cacheTimeout=”30”{}

Tuesday, June 18, 13

Injection Styles

Tuesday, June 18, 13

Style Pros Cons

Annotations

Documentable

Better visibility
Rapid Workflows

Just Metadata!

Can pollute code

Some call intrusive
Unusable on compiled
code

Configuration
Compiled/Legacy Code

Multiple configurations
per object
Visible Object Map

Tedious
Slower workflow

Lower visibility

Dependencies, Scope, Names?

Tuesday, June 18, 13

Injection Annotation
Use one annotation: inject

Tells the Injector what to inject
Concatenated strings separated by “:”
First section is called DSL namespace
inject=”id:MyService”, inject=”coldbox:plugin:Logger”

Namespace Description

ID-Model-Empty Mapped references by key

WireBox WireBox related objects: parent injectors, binder, properties, scopes

CacheBox CacheBox related objects: caches, cache keys, etc

Provider Object Providers

LogBox LogBox related objects: loggers, root loggers

ColdBox ColdBox related objects: interceptors, entity services, etc

Custom Your own live annotations

Tuesday, June 18, 13

Annotations

// CF Property Injection
property name=“service” inject;
property name=“service” inject=”id:CoolService”;
property name=“log” inject=”logbox:logger:{this}”;

// Constructor
function init(service inject){
 variables.service = arguments.service;
 return init;
}

// Setter
function setService(service) inject{
 variables.service = arguments.service;
}

Tuesday, June 18, 13

CFC Annotations
@autowire = boolean [true]
@alias = list of know names for this CFC
@eagerInit [false]
@threadSafe [false]
@scope = valid scope
@singleton
@cachebox = cache provider [default]
@cache [default]
@cacheTimeout = minutes
@cacheLastAccessTimeout = minutes
@parent = parent ID
@mixins = A list of UDF templates to mixin

Tuesday, June 18, 13

Event Model

Announce events throughout injector and object life cycles
Create simple CFC listeners or enhanced ColdBox interceptors
Modify CFCs, metadata, etc
Extend WireBox-CacheBox YOUR WAY!

component{

configure(injector,properties){}

afterInstanceCreation(interceptData){
var target = arguments.interceptData.target;

target.$formatdate = variables.formatDate;
}

function formatDate(){}
}

Tuesday, June 18, 13

If you are a source junky and want to help out:
https://github.com/ColdBox/coldbox-platform

Bugs, enhancements, ideas:
https://ortussolutions.atlassian.net/browse/WIREBOX
http://groups.google.com/group/coldbox

Source Code

Issues & Mailing List

Tuesday, June 18, 13

https://github.com/ColdBox/coldbox-relax
https://github.com/ColdBox/coldbox-relax
https://github.com/coldbox/coldbox-relax/issues
https://github.com/coldbox/coldbox-relax/issues
http://groups.google.com/group/coldbox
http://groups.google.com/group/coldbox

Thanks!

Q & A

Tuesday, June 18, 13

