
WireBox Standalone

By George Murphy

About Me

• Contractor

• ColdFusion since version 4.5

• Member Team ColdBox

• ColdFusion, JavaScript, and Flex developer

5

What is WireBox?

4

3

2

1

How can WireBox help me?

WireBox system Requirements?

What are the WireBox Flavors?

Install and use WireBox?

WireBox Dependency Injection

What is WireBox?

WireBox is a next generation conventions based dependency injection and AOP
(Aspect Oriented Programming) framework for ColdFusion.

No need for custom
objects factories

No manual object
creation

Provide object
persistence

More extensible
and testable

Provide AOP
capabilities to

objects

RAD workflows Annotations

Conventions

Bring a smile

How can WireBox help me?

Cherry
ColdBox

Vanilla
Standalone

WireBox Flavors

WireBox Standalone

Injector

Parent
Injector

Event
Manager LogBox CacheBox

Binder

Mappings

Req 1 Req 2 Req 3 Req 4

System Requirements

ColdFusion 8
and above

Railo 3.1 and
above

Application
Scope

User can
choose other
scopes

Download http://www.coldbox.org/download

Install and use WireBox

2
1

3
4

Step 1 Step2 Step 3 Step 4

Run Code Namespace is
wirebox.system

.ioc

Or create a
mapping as

WireBox

Drop in your
webroot as

WireBox

Wirebox = createObject(‘component’, ‘wirebox.system.ioc.injector’).Init()

Install ColdBox
Platform
Utilities

ColdFusion
Builder

Extensions

Lots of great
WireBox
Utilities

ColdSpring to
WireBox

Converter

DI annotations

Make your life easier

http://www.coldbox.org/forgebox/view/coldbox-platform-utilities

WireBox Injection Idioms
Constructor argument

Component {
 function init (mydependency) {
 variables.mydependency = arguments.mydependency;
 }
}

Setter/Method
 function setMyDependency (mydependency) {
 variables.mydependency = arguments.mydependency;
 }

Mixins (CFProperty)
Component {
 property name=“mydependency” inject;
}

WireBox Creation Styles
Approach Purpose Positives Negatives

Implicit
Mappings

To replace
Create object Calls

Very fast to
prototype
Request object by
path

Not refactoring
friendly

WireBox Creation Styles
Approach Purpose Positives Negatives

Implicit
Mappings

To replace
Create object Calls

Very fast to
prototype
Request object by
path

Not refactoring
friendly

Implicit Creation

wirebox = createObject(“component”, ”wirebox.system.ioc.injector”).init();

cars = wirebox.getInstance(“model.myCarObj”).getCars();

WireBox Creation Styles
Approach Purpose Positives Negatives

Implicit
Mappings

To replace
Create object Calls

Very fast to
prototype
Request object by
path

Not refactoring
friendly

Approach Purpose Positives Negatives

Implicit
Mappings

To replace
Create object Calls

Very fast to
prototype
Request object by
path

Not refactoring
friendly

Explicit Mappings To replace
Create object
Calls with named
keys

Ability to create
multiple named
mappings that
point to the same
class refactoring
friendly

Not as fast, must
be defined in the
binder

WireBox Creation Styles
Approach Purpose Positives Negatives

Implicit
Mappings

To replace
Create object Calls

Very fast to
prototype
Request object by
path

Not refactoring
friendly

Approach Purpose Positives Negatives

Implicit
Mappings

To replace
Create object Calls

Very fast to
prototype
Request object by
path

Not refactoring
friendly

Explicit Mappings To replace
Create object
Calls with named
keys

Ability to create
multiple named
mappings that
point to the same
class refactoring
friendly

Not as fast, must
be defined in the
binder

Explicit Mappings
Explicit Binder Configuration
map(“koolCars”).to(“model.myCarObj”);

wirebox = createObject(“component”, ”wirebox.system.ioc.injector”).init();

cars = wirebox.getInstance(“koolCars”).getCars();

WireBox Creation Styles
Approach Purpose Positives Negatives

Implicit
Mappings

To replace
Create object Calls

Very fast to
prototype
Request object by
path

Not refactoring
friendly

Approach Purpose Positives Negatives

Implicit
Mappings

To replace
Create object Calls

Very fast to
prototype
Request object by
path

Not refactoring
friendly

Explicit Mappings To replace
Create object
Calls with named
keys

Ability to create
multiple named
mappings that
point to the same
class refactoring
friendly

Not as fast, must
be defined in the
binder

Approach Purpose Positives Negatives

Implicit
Mappings

To replace
Create object Calls

Very fast to
prototype
Request object by
path

Not refactoring
friendly

Explicit Mappings To replace
Create object
Calls with named
keys

Ability to create
multiple named
mappings that
point to the same
class refactoring
friendly

Not as fast, must
be defined in the
binder

Scan Locations CFC discovery by
conventions

A partial
instantiation path
is mapped, very
fast to prototype

More difficult
concept

WireBox Creation Styles
Approach Purpose Positives Negatives

Implicit
Mappings

To replace
Create object Calls

Very fast to
prototype
Request object by
path

Not refactoring
friendly

Approach Purpose Positives Negatives

Implicit
Mappings

To replace
Create object Calls

Very fast to
prototype
Request object by
path

Not refactoring
friendly

Explicit Mappings To replace
Create object
Calls with named
keys

Ability to create
multiple named
mappings that
point to the same
class refactoring
friendly

Not as fast, must
be defined in the
binder

Approach Purpose Positives Negatives

Implicit
Mappings

To replace
Create object Calls

Very fast to
prototype
Request object by
path

Not refactoring
friendly

Explicit Mappings To replace
Create object
Calls with named
keys

Ability to create
multiple named
mappings that
point to the same
class refactoring
friendly

Not as fast, must
be defined in the
binder

Scan Locations CFC discovery by
conventions

A partial
instantiation path
is mapped, very
fast to prototype

More difficult
concept

Scan Locations
Scan Locations binder configuration
wirebox.scanlocations = [“model”];

Scan Locations Creation

wirebox = createObject(“component”, ”wirebox.system.ioc.injector”).init();

cars = wirebox.getInstance(“myCarObj”).getCars();

WireBox more than just CFCs
Type Description

CFC ColdFusion Components

Java Any Java Object

Webservice Any WSDL

RSS Any RSS or Atom feed

DSL Any registered or core DSL

Constant A constant value

Factory An Object from a factory

Provider A registered provider object

Let’s look at code

Resources

• Wirebox download
http://www.coldbox.org/download

• Documentation
http://wiki.coldbox.org/wiki/WireBox.cfm

• Sample Code
https://github.com/murpg/wireboxstandaloneaop

http://www.coldbox.org/download
http://wiki.coldbox.org/wiki/WireBox.cfm
https://github.com/murpg/wireboxstandaloneaop
https://github.com/murpg/wireboxstandaloneaop

Do you have
any questions?

George Murphy
georgemurphy@websbygeorge.com

Contact me

	Slide Number 1
	About Me
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	WireBox Standalone
	Slide Number 8
	Slide Number 9
	Slide Number 10
	WireBox Injection Idioms
	WireBox Creation Styles
	WireBox Creation Styles
	WireBox Creation Styles
	WireBox Creation Styles
	WireBox Creation Styles
	WireBox Creation Styles
	Slide Number 18
	Let’s look at code
	Resources
	Do you have�any questions?
	Contact me

