
WWW.COLDBOX.ORG

http://www.coldbox.org

WWW.COLDBOX.ORG

http://www.coldbox.org

WWW.COLDBOX.ORG

xUnit and BDD Testing Goodness!

http://www.coldbox.org

WHO AM I?

WHO AM I?
• Luis Majano - Computer Engineer	

• Born in El Salvador ------------------>	

• Architecture + Software Design	

• CEO of Ortus Solutions	

• Manager of the IECFUG
(www.iecfug.com)	

• Adobe Community Professional	

• Creator of all things Box:  
ColdBox, ContentBox, WireBox....

http://www.iecfug.com

AGENDA

AGENDA

• Why TestBox	

• Capabilities	

• Installation	

• MXUnit	

• Testing Styles	

• Deep Dive

Testing
Landscape

Why

Testing
Landscape

Why Where to start?	

What to test?	

What not to test?

TestBox is a next generation testing framework for ColdFusion that is based
on BDD (Behavior Driven Development) for providing a clean obvious

syntax for writing tests. It contains not only a testing framework, runner,
assertions and expectations library but also integrates with MockBox for
mocking and stubbing. It also supports xUnit style of testing and MXUnit

compatibilities.

• BDD & xUnit style testing

• BDD & xUnit style testing
• Life-Cycle methods

• BDD & xUnit style testing
• Life-Cycle methods
• MockBox Integration

• BDD & xUnit style testing
• Life-Cycle methods
• MockBox Integration
• AsynchronousTesting

• BDD & xUnit style testing
• Life-Cycle methods
• MockBox Integration
• AsynchronousTesting

• ANT/Jenkins Integration

• BDD & xUnit style testing
• Life-Cycle methods
• MockBox Integration
• AsynchronousTesting

• ANT/Jenkins Integration
• Custom Reporters & Runners

• BDD & xUnit style testing
• Life-Cycle methods
• MockBox Integration
• AsynchronousTesting

• ANT/Jenkins Integration
• Custom Reporters & Runners
• Dynamic Labels & Skipping

• BDD & xUnit style testing
• Life-Cycle methods
• MockBox Integration
• AsynchronousTesting

• ANT/Jenkins Integration
• Custom Reporters & Runners
• Dynamic Labels & Skipping
• Debug Output Streams

INSTALLATION + REQUIREMENTS
• ColdFusion 9.01+, Railo 3.1+	

• xUnit + MXUnit Compatibility	

• ColdFusion 10+, Railo 4+	

• xUnit, MXUnit, BDD	

• Place anywhere you like, create a “/testbox”
mapping 
 
 

• Using ColdBox? Already installed!	

• Sublime Package, CPU is coming

MXUNIT COMPATIBLE

• Compatible with xUnit style by MXUnit	

• Migrate existing tests to TestBox	

• No BDD	

• How do you migrate? 
 
 
 

• If something is not working, report it: bugs@coldbox.org

mailto:bugs@coldbox.org

What you get!

What you get! API Docs

What you get! API Docs

Test Browser

What you get! API Docs

Test Browser

Global Runner

What you get! API Docs

Test Browser

Global Runner

Test Harness

What you get! API Docs

Test Browser

Global Runner

Test Harness

Samples

What you get! API Docs

Test Browser

Global Runner

Test Harness

Samples

Core

Test Harness

Test Harness
Automated test

results!

Test Harness
Automated test

results!

xUnit/BDDTest
Bundles

Test Harness
Automated test

results!

xUnit/BDDTest
Bundles

Harness bootstrap

Test Harness
Automated test

results!

xUnit/BDDTest
Bundles

Harness bootstrap

HTML Runner

Test Harness
Automated test

results!

xUnit/BDDTest
Bundles

Harness bootstrap

HTML Runner

ANT Runner

TESTING STYLES

TESTING STYLES

xUnit
TDD

Unit Focused

Function Focused

Asserts

BDD
Test Scenarios

Spec Focused

Nested Scenarios

Expectations

TEST BUNDLE CFC

• No matter what style, you start with a test bundle CFC	

• Inherits from testbox.system.testing.BaseSpec or not!  
 
 

• URL runner caveat	

• Get’s lots of methods and properties for testing	

• TesBox will then execute all tests within 1 or more bundles

RUNNING YOUR BUNDLES

• Execute bundle (if using inheritance) via the URL	

• http://mysite/test/bundle.cfc?method=runRemote

• Using the TestBox Class: testbox.system.testing.TestBox	

• Bundle(s) Runner	

• Directory Runner	

• SOAP Runner	

• HTTP/REST Runner	

• ANT Runner	

• Custom Runners	

• What’s the output? We call this reporters	

REPORTERS
• ANTJunit : A specific variant of JUnit XML that works with the ANT junitreport task	

• Codexwiki : Produces MediaWiki syntax for usage in Codex Wiki	

• Console : Sends report to console	

• Doc : Builds semantic HTML to produce nice documentation	

• Dot : Builds an awesome dot report	

• JSON : Builds a report into JSON	

• JUnit : Builds a JUnit compliant report	

• Raw : Returns the raw structure representation of the testing results	

• Simple : A basic HTML reporter	

• Text : Back to the 80's with an awesome text report	

• XML : Builds yet another XML testing report	

• Tap : A test anything protocol reporter	

• Min : A minimalistic view of your test reports	

GLOBAL RUNNER

GLOBAL RUNNER

TEST BROWSER

TEST BROWSER

RUNNER SAMPLES

RUNNER SAMPLES

RUNNER SAMPLES

RUNNER SAMPLES

What is B.D.D.?

What is B.D.D.?

In software engineering, behavior-driven development
(BDD) is a software development process based on
test-driven development (TDD). Behavior-driven
development combines the general techniques and
principles of TDD with ideas from domain-driven
design and object-oriented analysis and design to
provide software developers and business analysts
with shared tools and a shared process to
collaborate on software development, with the aim of
delivering "software that matters"

T.D.D.

T.D.D.

CFC

Validate()

Add()

List()

Save()

T.D.D.

Write Test

Mock

Write Code Verify

Refactor

CFC

Validate()

Add()

List()

Save()

TDD Process

T.D.D.

• It is an approach to develop software by writing code that exercises your code	

• It does help you:	

• Have immediate feedback	

• Create tests before rather than after (yea right!)	

• Express behavior and ideas	

• Creates some documentation	

• Verifies your source code compiles and executes

CFC

Validate()

Add()

List()

Save()

T.D.D.
• Is not about verifying software requirements	

• Does not:	

• Verify user’s or stakeholder expectations	

• Express that requirements are satisfied	

• Very very developer oriented	

• Tedious as we always have to test methods

and refactoring is a pain	

• Let’s be truthful, TDD can be a pain in the

buttocks!	

• We start strong, but we finish weak, even if we

finish

T.D.D.
• Is not about verifying software requirements	

• Does not:	

• Verify user’s or stakeholder expectations	

• Express that requirements are satisfied	

• Very very developer oriented	

• Tedious as we always have to test methods

and refactoring is a pain	

• Let’s be truthful, TDD can be a pain in the

buttocks!	

• We start strong, but we finish weak, even if we

finish

Developer Test
Paralysis

B.D.D is T.D.D. Evolved

• Dan North	

• http://dannorth.net/introducing-bdd/	

• Ubiquitous language	

• existing or being everywhere at the same time : constantly	

• Promotes communication & collaboration between 	

• Developers + business analysts + stakeholders	

• Focuses on stories or requirements rather than on functions	

• Focuses on what a system should do and not on how it should be implemented	

• Better readability and visibility	

• Verify that software works but also that it meets customer expectations

B.D.D. Process

B.D.D. Process

Stories

Scenario
Specs

Implement
Behavior Verify

Refactor

B.D.D. Process

Stories

Scenario
Specs

Implement
Behavior Verify

Refactor

B.D.D. Process

Stories

Scenario
Specs

Implement
Behavior Verify

Refactor

B.D.D. Process

Stories

Scenario
Specs

Implement
Behavior Verify

Refactor

B.D.D. Process

Stories

Scenario
Specs

Implement
Behavior Verify

Refactor

B.D.D. Process

Stories

Scenario
Specs

Implement
Behavior Verify

Refactor

B.D.D. Process

Stories

Scenario
Specs

Implement
Behavior Verify

Refactor

B.D.D. Process

Stories

Scenario
Specs

Implement
Behavior Verify

Refactor

Story Framework

• Where to start?

• Outside – In

• What to test?

• User stories

• What not to test?

• Anything else

Story Framework

Story Scenario Spec

• Where to start?

• Outside – In

• What to test?

• User stories

• What not to test?

• Anything else

Stories to Scenarios

Stories to Scenarios

As an application user
I want to be welcomed with my name at login

in order to personalize my experience

Scenario: user login with valid credentials
 Given a user “luis" with password "secret" exists

 When I login as “luis" with "secret"
 Then I should see the message "Welcome back luis!"

Stories to Scenarios

Stories to Scenarios

Story to Scenario to
TestBox

Story to Scenario to
TestBox

As an application user

I want to be welcomed with my name at login

in order to personalize my experience

Scenario: user login with valid credentials

 Given a user “luis" with password "secret" exists

 When I login as “luis" with "secret"

 Then I should see the message "Welcome back luis!"

describe(“User login with valid credentials”, function(){
 it(“should see a personalized message”, function(){

 userService.login(“luis”, “secret”)
 var event = execute(“user.home”)
 expect(event.getValue(“welcome”)).toBe(“Welcome back luis!”)

 })
})

TEST BUNDLE CFC

• run()

• Declare your scenario specs + suites	

• Life-cycle methods	

• Inherit some assertion, utility and
mocking methods	

• Expectations Library: expect()	

• Assertions Library: $assert

SUITES: DESCRIBE() YOUR TESTS

• Suites begin with a describe() block	

• title	

• closure	

• A suite is composed of specs or more suites	

• Closures can contain	

• Life-cycle methods	

• More suites	

• Specs

DESCRIBE() ARGUMENTS

Annotation Description

Title The title of the suite to register

Body The closure that represents the test suite

Labels The list or array of labels this suite group belongs to

Skip A flag or a closure that tells TestBox to skip this suite group from testing
if true. If this is a closure it must return boolean.

AsyncAll If you want to parallelize the execution of the defined specs in this suite
group.

SPECS: IT()

• At least 2 args	

• Title
• Closure
• Labels	

• Skip	

• Closure is where you define	

• Scenarios	

• 1+ expectations, assertions	

• Specs tested in order declared

EXPECTATIONS + MATCHERS

• Self-concatenated method calls that evaluate your SUT	

• Start with a call to expect(actual)
• Concatenated with matcher methods	

• TestBox ships with a plethora of matchers!	

• Matchers also have negation (not) counterparts

NESTED SUITES

• Nest to your heart’s delight	

• Life-cycle methods bubble up	

• Great for grouping and recursive scenarios	

• Execute in descending order

EXPECTING EXCEPTIONS

• Verifies exceptions	

• Pass a closure to expect() and use toThrow(type, regex)	

• Match types and message+detail regex

LABELS + SKIPPING

• Apply labels to suites and specs	

• Skip suites and specs	

• Shortcut methods: xDescribe(), xIt()

ASYNCHRONICITY

• TestBox executes all specs in parallel	

• Decided on a per describe() block	

• Attention to var-scoping	

• Test shared access and contention	

• Much power comes much responsibility!

What the future holds!

• Grunt JS Tasks	

• NodeJS Runners and Watchers	

• CPU Runners for CF Builder	

• More Sublime Integration	

• Eclipse Runners	

• More Reporters	

• More focus on automation	

• Gherkins support

What the future holds!

• Grunt JS Tasks	

• NodeJS Runners and Watchers	

• CPU Runners for CF Builder	

• More Sublime Integration	

• Eclipse Runners	

• More Reporters	

• More focus on automation	

• Gherkins support

Thanks!

Q & A

Thanks!

Q & A

