
Tuesday, June 11, 13

Just Mock It!
Discovering Mocks & Stubs

Tuesday, June 11, 13

Who am I?

Tuesday, June 11, 13

Who am I?
Luis Majano - Computer Engineer

Born in El Salvador ------------------>

President of Ortus Solutions

Manager of the IECFUG
(www.iecfug.com)

Creator of ColdBox, MockBox,
LogBox, CacheBox, WireBox,
ContentBox, or anything Box!

Documentation Lover!
Don’t be a hater!

Tuesday, June 11, 13

http://www.iecfug.com
http://www.iecfug.com

Tuesday, June 11, 13

What we will cover?
Unit Testing Recap

Testing Toolbox

What is Mocking?

What is a Mock Object

Why Mock?

Mocking Frameworks

Practical Mocking with MockBox

Tuesday, June 11, 13

Unit Testing

Tuesday, June 11, 13

Unit Testing

“unit testing is a software verification and validation method in
which a programmer tests if individual units of source code are fit
for use. A unit is the smallest testable part of an application”
- wikipedia

Tuesday, June 11, 13

http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Source_code

Why Unit Testing?

Tuesday, June 11, 13

Why Unit Testing?

Can improve code quality -> quick error discovery

Code confidence via immediate verification

Can expose high coupling

Will encourage refactoring to produce > testable code

Remember: Testing is all about behavior and expectations

Tuesday, June 11, 13

Bugs cost $

Tuesday, June 11, 13

Bugs cost $

Tuesday, June 11, 13

Unit Testing BasicsMXUnit

Tuesday, June 11, 13

Unit Testing Basics
MXUnit - www.mxunit.org
1-1 Relationship between SUT and Test Case
Test all methods, even private ones?

CFC#

Validate()#

Add()#

List()#

Save()#
Test#
Case#

testValidate()#

testAdd()#

testList()#

testSave()#

MXUnit

Tuesday, June 11, 13

http://www.mxunit.org
http://www.mxunit.org

Unit Testing Basics
MXUnit - www.mxunit.org
1-1 Relationship between SUT and Test Case
Test all methods, even private ones?

CFC#

Validate()#

Add()#

List()#

Save()#
Test#
Case#

testValidate()#

testAdd()#

testList()#

testSave()#

MXUnit

Tuesday, June 11, 13

http://www.mxunit.org
http://www.mxunit.org

Unit Testing Basics
MXUnit - www.mxunit.org
1-1 Relationship between SUT and Test Case
Test all methods, even private ones?

CFC#

Validate()#

Add()#

List()#

Save()#
Test#
Case#

testValidate()#

testAdd()#

testList()#

testSave()#

MXUnit

Tuesday, June 11, 13

http://www.mxunit.org
http://www.mxunit.org

Unit Testing Basics

Tuesday, June 11, 13

component{
 function add(a,b){
 return a + b;
 }
}

Unit Testing Basics

component extends=”mxunit.framework.TestCase”{

 function setup(){
 calculator = new Calculator();
 }

 function testAdd(){
 r = calculator.add(1,4);
 assertEquals(5, r);
 }

}

SUT

Unit Test

Tuesday, June 11, 13

component{
 function add(a,b){
 return a + b;
 }
}

Unit Testing Basics

component extends=”mxunit.framework.TestCase”{

 function setup(){
 calculator = new Calculator();
 }

 function testAdd(){
 r = calculator.add(1,4);
 assertEquals(5, r);
 }

}

SUT

Unit Test

Tuesday, June 11, 13

component{
 function add(a,b){
 return a + b;
 }
}

Unit Testing Basics

component extends=”mxunit.framework.TestCase”{

 function setup(){
 calculator = new Calculator();
 }

 function testAdd(){
 r = calculator.add(1,4);
 assertEquals(5, r);
 }

}

SUT

Unit Test

Tuesday, June 11, 13

component{
 function add(a,b){
 return a + b;
 }
}

Unit Testing Basics

component extends=”mxunit.framework.TestCase”{

 function setup(){
 calculator = new Calculator();
 }

 function testAdd(){
 r = calculator.add(1,4);
 assertEquals(5, r);
 }

}

SUT

Unit Test

Tuesday, June 11, 13

TDD Process

Write&Test&

Mock&

Write&Code&Verify&

Refactor&

Tuesday, June 11, 13

TDD Process

Write&Test&

Mock&

Write&Code&Verify&

Refactor&

Tuesday, June 11, 13

TDD Process

Write&Test&

Mock&

Write&Code&Verify&

Refactor&

Tuesday, June 11, 13

TDD Process

Write&Test&

Mock&

Write&Code&Verify&

Refactor&

Tuesday, June 11, 13

TDD Process

Write&Test&

Mock&

Write&Code&Verify&

Refactor&

Tuesday, June 11, 13

TDD Process

Write&Test&

Mock&

Write&Code&Verify&

Refactor&

Tuesday, June 11, 13

TDD Process

Write&Test&

Mock&

Write&Code&Verify&

Refactor&

Tuesday, June 11, 13

TDD Process
Write&Test&

Mock&

Write&Code&Verify&

Refactor&

Tuesday, June 11, 13

TDD Process
Test Driven Development

Can be a new development paradigm for some

Work from the IDE

Write software units

Confirm expectations and behavior via unit testing and mocking

Continue writing your software units

Rinse & Repeat

Write&Test&

Mock&

Write&Code&Verify&

Refactor&

Tuesday, June 11, 13

Important Tests

Tuesday, June 11, 13

Important Tests
Unit Testing

Test behavior of individual objets

Integration Testing

ColdBox Platform or ColdBox LITE

Test entire application virtually

Test entire controller layer top-down

UI verification testing

Verification via HTML/Visual elements

Tuesday, June 11, 13

Testing ToolBox

Tuesday, June 11, 13

Testing ToolBox
MXUnit

ColdFusion Builder OR CFEclipse

A mocking framework

ANT

Cloudy with a chance of tests

Jenkins, Bamboo, TeamCity

Selenium

JMeter or Webstress Tool, Apache AB

Have some more?

Tuesday, June 11, 13

Tuesday, June 11, 13

What is Mocking?

is that when you
hit people in the

face?

Tuesday, June 11, 13

Mocking

Tuesday, June 11, 13

Mocking

“To treat with ridicule or contempt; to imitate, to counterfeit”

Tuesday, June 11, 13

Mock Object

Tuesday, June 11, 13

Mock Object

"A mock object is an object that takes the place of a 'real'
object in such a way that makes testing easier and more

meaningful, or in some cases, possible at all"
 by Scott Bain - Emergent Design

Tuesday, June 11, 13

Mock Object

Tuesday, June 11, 13

Mock Object

Tuesday, June 11, 13

Mock Object

Tuesday, June 11, 13

Mock Object

Tuesday, June 11, 13

Mock Object

Tuesday, June 11, 13

Mock Object

Tuesday, June 11, 13

Mock Object

Tuesday, June 11, 13

Mock Object

Tuesday, June 11, 13

Stub Object

Tuesday, June 11, 13

Stub Object
“A stub is an empty container that represents a CFC,

ANY CFC!”

Tuesday, June 11, 13

Stub Object
“A stub is an empty container that represents a CFC,

ANY CFC!”

Tuesday, June 11, 13

Why Mock?

Tuesday, June 11, 13

Why Mock?

Because you are immature!

Tuesday, June 11, 13

Why Mock?

Because you are immature!

Tuesday, June 11, 13

Why Mock?

Because you are immature!
Isolate your SUT -> Software Under Test

Tuesday, June 11, 13

Why Mock?

Because you are immature!
Isolate your SUT -> Software Under Test
To build against interfaces & contracts

Tuesday, June 11, 13

Why Mock?

Because you are immature!
Isolate your SUT -> Software Under Test
To build against interfaces & contracts
Building against missing integration pieces

Tuesday, June 11, 13

Why Mock?

Because you are immature!
Isolate your SUT -> Software Under Test
To build against interfaces & contracts
Building against missing integration pieces
To control data and expectations

Tuesday, June 11, 13

Why Mock?

Because you are immature!
Isolate your SUT -> Software Under Test
To build against interfaces & contracts
Building against missing integration pieces
To control data and expectations
Mock components whose behavior is undesirable
or hard to control

Tuesday, June 11, 13

Why Mock?

Because you are immature!
Isolate your SUT -> Software Under Test
To build against interfaces & contracts
Building against missing integration pieces
To control data and expectations
Mock components whose behavior is undesirable
or hard to control

A mock is essentially the interface without any real implementation

Tuesday, June 11, 13

Why Mock?

Tuesday, June 11, 13

Why Mock?
How do you test when helper components that are not built yet?

Tuesday, June 11, 13

Why Mock?
How do you test when helper components that are not built yet?

How do you do controlled exceptions?

Tuesday, June 11, 13

Why Mock?
How do you test when helper components that are not built yet?

How do you do controlled exceptions?

How do you test & control external API calls?

Tuesday, June 11, 13

Why Mock?
How do you test when helper components that are not built yet?

How do you do controlled exceptions?

How do you test & control external API calls?

How do you control results from ColdFusion tags or functions?

Tuesday, June 11, 13

Why Mock?
How do you test when helper components that are not built yet?

How do you do controlled exceptions?

How do you test & control external API calls?

How do you control results from ColdFusion tags or functions?

How do you control network connections? Do you pull the network plug?

Tuesday, June 11, 13

Why Mock?

Tuesday, June 11, 13

<cfdirectory action=”list” directory=”#arguments.path#” name=”qResults”>

<cfhttp url=”#arguments.urlPath#” results=”qResults”>

<cfmail to=”#to#” from=”#from#” subject=”#subject#”>#content#</cfmail>

<cfquery />

function init(){
 var helper = new Helper();
}

private function getData(){ return data; }

Why Mock?
How do you test the following?

Tuesday, June 11, 13

Mocking Reality!

Tuesday, June 11, 13

Mocking Reality!
Some code is untestable or we would need some serious world of hurt
to test it.

Tuesday, June 11, 13

Refactor Example

Tuesday, June 11, 13

<cfdirectory action=”list” directory=”/myapp/path” name=”qResults”>

Refactor Example

<cffunction name=”getFiles” output=”false” returnType=”query”>
 <cfargument name=”path”>

 <cfset var qResults = “”>
 <cfdirectory action=”list” directory=”#arguments.path#” name=”qResults”>

 ... Process Here ...
 <cfreturn qResults>
</cffunction>

Original

Refactored

Tuesday, June 11, 13

Refactor Example

Tuesday, June 11, 13

<cffeed action=”read” source=”http...” query=”results”>

Refactor Example

<cffunction name=”getFeeds” output=”false” returnType=”struct”>
 <cfargument name=”feedURL”>
 <cfargument name=”timeout”>

 <cfset var results = {}>

 <cffeed action=”Read” source=”#arguments.feedURL#” query=”results”
 timeout=”#arguments.timeout#”>

 <cfreturn results>
</cffunction>

Original

Refactored

Tuesday, June 11, 13

Refactoring Thoughts

Tuesday, June 11, 13

Refactoring Thoughts
First thoughts

This is Dumb!
I’ll end up with lots of small utility methods
More work?

Mature thoughts
Cool!
I’ll have more granular and reusable methods that can be mocked easily
Makes my code cleaner
Logical code separation

Tuesday, June 11, 13

Typical Example

Tuesday, June 11, 13

Typical Example

Service

Tuesday, June 11, 13

Typical Example

Service

ORM

Tuesday, June 11, 13

Typical Example

ServiceDAO

ORM

Tuesday, June 11, 13

Typical Example

ServiceDAO

ORM

Domain
Objects

Tuesday, June 11, 13

Typical Example

ServiceDAO

ORM

Settings

Domain
Objects

Tuesday, June 11, 13

Typical Example

ServiceMock DAO

Mock ORM

Mock
Settings

Mock Domain
Objects

Tuesday, June 11, 13

What do we mock?

Tuesday, June 11, 13

What do we mock?
Entire CFCs
Specific Methods
Properties
Data
Exceptions

Tuesday, June 11, 13

What do we mock?
Entire CFCs
Specific Methods
Properties
Data
Exceptions

Tuesday, June 11, 13

Mocking Frameworks

Tuesday, June 11, 13

Mocking Frameworks

MockBox by ColdBox
MightyMock by MXUnit

Tuesday, June 11, 13

Key Features

Tuesday, June 11, 13

Key Features
Mock Objects with or without implementations

Mock methods & properties in any scope

Create Stub Objects -> Non-existent objects

Mock exceptions

Mock arguments to results

Logging & Debugging

Verification methods

State Machine Results

Tuesday, June 11, 13

Tuesday, June 11, 13

Setting up MockBox

ColdBox Embedded

mockBox = createObject(“component”,”coldbox.system.testing.MockBox”).init();

ColdBox Base Tests = Easier Integration

mockBox = getMockBox();

Tuesday, June 11, 13

Setting up MockBox

ColdBox Embedded

Standalone

mockBox = createObject(“component”,”coldbox.system.testing.MockBox”).init();

mockBox = createObject(“component”,”mockBox.system.testing.MockBox”).init();

ColdBox Base Tests = Easier Integration

mockBox = getMockBox();

Tuesday, June 11, 13

Creation Methods

Tuesday, June 11, 13

Creation Methods

CreateMock()

CreateEmptyMock()

PrepareMock()

CreateStub()

Creates & Decorates
Objects Dynamically!

Tuesday, June 11, 13

Creation Methods

CreateMock()

CreateEmptyMock()

PrepareMock()

CreateStub()

user = mockBox.createMock(“model.User”);
dao = mockBox.createEmptyMock(“model.UserDAO”);
mockBox.prepareMock(service);

nonExistentService = mockBox.createStub();
mockInterface = mockBox.createStub(implements=”model.ICache”);
mockInheritance = mockbox.createStub(extends=”model.SecurityService”);

Creates & Decorates
Objects Dynamically!

Tuesday, June 11, 13

Injected Methods

Tuesday, June 11, 13

Injected Methods

Description Method

$() Mock a method

$property() Mock a property (DI)

$results() Mock results pattern

$args() Argument driven results

$callLog() Get call logging stats

$querySim() Query Simulator

Tuesday, June 11, 13

$()

Tuesday, June 11, 13

$()
Arguments

method

returns

preserveReturnType

throwException

throwType

throwDetail

throwMessage

callLogging

// Cascaded mocks
mockUser.$(“isFound”,true).$(“isDirty”,true);

// Mock Exception
mockUser.
$(method=”save”,
 throwsException=true,
 throwType=”IllegalStateException”,
 throwMessage=”Invalid User Data”);

// Mock Return Objects
mockRole = mockBox.createMock(“Role”);
service.$(method=”getRole”,returns=mockRole);

Tuesday, June 11, 13

$()
Setup

Tuesday, June 11, 13

$()
Setup

mockUser = mockBox.createEmptyMock(“model.User”).init();
userService = mockBox.createMock(“model.UserService”).init();

userServie.$(“get”, mockUser);

Tuesday, June 11, 13

$()
Setup

Mock methods

mockUser = mockBox.createEmptyMock(“model.User”).init();
userService = mockBox.createMock(“model.UserService”).init();

userServie.$(“get”, mockUser);

//Technique 1
user.$(“getName”, “Luis Majano”);

//Technique 2
user.$(“getName”).$results(“Luis Majano”, “Curt Gratz”, “Diego Maradona”);

Tuesday, June 11, 13

$args()

Tuesday, June 11, 13

$args()
Argument directed results

MUST be chained via $results()

// Call to Mock
if(dao.getSetting(“userAudit”)){
 startAudit(dao.getSetting(“auditTables”));
};

// Mocking Calls
dao.$(“getSetting”).$args(“userAudit”).$results(true);
dao.$(“getSetting”).$args(“auditTables”).$results(“user,order,product”);

Tuesday, June 11, 13

$args()
Named Parameters

Positional Parameters

Argument Collection

Tuesday, June 11, 13

$args()

saveUser(fname=”luis”,lname=”majano”);

Named Parameters

Positional Parameters

Argument Collection

Tuesday, June 11, 13

$args()

saveUser(fname=”luis”,lname=”majano”);

saveUser(”luis”,”majano”);

Named Parameters

Positional Parameters

Argument Collection

Tuesday, June 11, 13

$args()

saveUser(fname=”luis”,lname=”majano”);

saveUser(”luis”,”majano”);

data = {
 fname = “luis”, lname = “majano”
};
saveUser(argumentCollection=data);

Named Parameters

Positional Parameters

Argument Collection

Tuesday, June 11, 13

$results()

Tuesday, June 11, 13

$results()

State machine your results

Repetition sequence

$results(1,2,3) + Called 5 Times = 1,2,3,1,2

// Using Single result set
dao.$(“getSetting”).$args(“userAudit”).$results(true);

// Using State Machine
user.$(“getVisitCount”).$results(5,6,700);

Tuesday, June 11, 13

State Machine

Tuesday, June 11, 13

State Machine

1"

2"

3"4"

5"

Tuesday, June 11, 13

$property()

Tuesday, June 11, 13

$property()
Mock any property on any scope

Great for settings and dependency injection mocking

// Mock a setting on the variables scope
service.$property(“cacheActive”,”variables”,true);

// Mock a file utility object
mockUtil = mockbox.createEmptyMock(“util.FileUtils”);
service.$property(“fileUtil”,”variables”, mockUtil);

// Mock in the variables.instance scope path
service.$property(“isDirty”,”instance”,true);

Tuesday, June 11, 13

Verification Methods

* Verification methods return boolean so they can be asserted

Tuesday, June 11, 13

Verification Methods
Method Description

$times(count,[methodName]) Verify X calls
$never([methodName]) Verify never called

$atLeast(min,[methodName]) Verify at least calls
$atMost(max,[methodName]) Verify at most calls

$once([methodName]) Verify called once
$count([methodName]) Method call counter

$reset() Reset all counters and logs

* Verification methods return boolean so they can be asserted

Tuesday, June 11, 13

Verification Methods

Tuesday, June 11, 13

Verification Methods

function testVerifyCallCount(){
 test.$("displayData",queryNew(''));
 assertTrue(test.$never());
 assertTrue(test.$never(“displayData”));

 test.displayData();

 assertFalse(test.$times(1,”displayData”));
 assertFalse(test.$once(”displayData”));

 test.displayData();
 assertEquals(true, test.$verifyCallCount(2));
}

function testMockMethodCallCount(){
 test.$("displayData",queryNew(''));
 test.$("getLuis",1);

 assertEquals(0, test.$count("displayData"));
 assertEquals(-1, test.$count("displayData2"));
}

Tuesday, June 11, 13

If all else fails?

Tuesday, June 11, 13

If all else fails?

<cfdump var="#targetObject.$debug()#">
Call 1-800-CALL-LUIS just £99/min

Tuesday, June 11, 13

If all else fails?

<cfdump var="#targetObject.$debug()#">
Call 1-800-CALL-LUIS just £99/min

Tuesday, June 11, 13

CBDW.2

Tuesday, June 11, 13

CBDW.2
Free online conference

Over 20 sessions

Speakers across the world

Mobile Development, DI, AOP, Basics, LITE,
ContentBox, Modules, Themes, etc

www.coldbox.org/cbdw

Tuesday, June 11, 13

http://www.coldbox.org/cbdw
http://www.coldbox.org/cbdw

CBDW.2
Free online conference

Over 20 sessions

Speakers across the world

Mobile Development, DI, AOP, Basics, LITE,
ContentBox, Modules, Themes, etc

www.coldbox.org/cbdw

Tuesday, June 11, 13

http://www.coldbox.org/cbdw
http://www.coldbox.org/cbdw

Tuesday, June 11, 13

Discussions

Tuesday, June 11, 13

Unit Testing
www.mxunit.org

Mocking
www.mxunit.org
wiki.coldbox.org/wiki/MockBox.cfm

ColdBox Resources
www.coldbox.org
wiki.coldbox.org
groups.google.com/group/coldbox

Professional Support & Training
www.ortussolutions.com

Resources

Tuesday, June 11, 13

http://www.mxunit.org
http://www.mxunit.org
http://www.mxunit.org
http://www.mxunit.org
http://www.coldboxframework.com
http://www.coldboxframework.com
http://wiki.coldbox.org
http://wiki.coldbox.org
http://groups.google.com/group/coldbox
http://groups.google.com/group/coldbox
http://www.coldbox.org/support
http://www.coldbox.org/support

Unit Testing
www.mxunit.org

Mocking
www.mxunit.org
wiki.coldbox.org/wiki/MockBox.cfm

ColdBox Resources
www.coldbox.org
wiki.coldbox.org
groups.google.com/group/coldbox

Professional Support & Training
www.ortussolutions.com

Resources

Luis Majano &
Ortus Solutions, Corp

lmajano@ortussolutions.com

Tuesday, June 11, 13

http://www.mxunit.org
http://www.mxunit.org
http://www.mxunit.org
http://www.mxunit.org
http://www.coldboxframework.com
http://www.coldboxframework.com
http://wiki.coldbox.org
http://wiki.coldbox.org
http://groups.google.com/group/coldbox
http://groups.google.com/group/coldbox
http://www.coldbox.org/support
http://www.coldbox.org/support
mailto:lmajano@coldboxframework.com
mailto:lmajano@coldboxframework.com

Thanks!

Q & A

Tuesday, June 11, 13

