
“Building Sustainable ColdFusion Applications”

The Definitive Guide To

The ColdBox Platform
(Covers up to version 2.6.3: Renewed)

By Luis F. Majano

Copyright © 2009

ISBN 1449907865 EAN-13 9781449907860

Ortus Solutions, Corp & Luis Majano

All rights reserved

First Edition

The information contained in this document is subject to change without notice.

The information contained in this document is the exclusive property of Ortus Solutions, Corp. This work
is protected under United States copyright law and the copyright laws of the given countries of origin and
applicable international laws, treaties, and/or conventions. No part of this work may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopying or recording, or
by any information storage or retrieval system, except as expressly permitted in writing by Ortus Solutions,
Corp. All requests should be sent to info@coldbox.org

ColdBox Framework, ColdBox Platform, ColdBox Platform Training Series are copyrighted software and
content service marks of Ortus Solutions, Corp.

Mention of other frameworks and software are made on this book, which are exclusive copyright property
of their respective authors and not Ortus Solutions, Corp.

External Trademarks & Copyrights

Flash, Flex, ColdFusion, and Adobe are registered trademarks and copyrights of Adobe Systems, Inc.
Railo is a trademark and copyright of Railo Technologies, GmbH

Notice of Liability

The information in this book is distributed “as is”, without warranty. The author and Ortus Solutions, Corp
shall not have any liability to any person or entity with respect to loss or damage caused or alleged to be
caused directly or indirectly by the content of this training book, software and resources described in it.

Luis F. Majano
ColdBox Platform
info@coldbox.org
www.coldbox.org

“But they that wait upon the LORD shall renew their strength; they shall
mount up with wings as eagles; they shall run, and not be weary; and they
shall walk, and not faint.” Isaiah 40:31

To my beloved wife Veronica, te amo bbita!

i | P a g e

Forward ...1

Preface ..1

Chapter 1 » Getting Started With ColdBox ..11

Chapter 2 » Installing ColdBox ..23

ii | P a g e

Chapter 3 » ColdFusion Components & OO Terms...37

Chapter 4 » Effective Web Application Architecture...47

Chapter 5 » ColdBox Essentials ...55

iii | P a g e

Chapter 6 » Internal Settings & Structures ...79

Chapter 7 » ColdBox Configuration File..89

iv | P a g e

Chapter 8 » The ColdBox Request Context..115

Chapter 9 » Event Handlers ..125

v | P a g e

Chapter 10 » SES URL Mappings ..149

vi | P a g e

Chapter 11 » Layouts & Views..167

vii | P a g e

Chapter 12 » Working With Ajax...187

Chapter 13 » Internationalization (i18n)...199

Chapter 14 » Model Integration Guide ...207

viii | P a g e

Chapter 15 » Plugins..229

Chapter 16 » Interceptors..239

Chapter 17 » Autowiring ..257

ix | P a g e

Chapter 18 » The ColdBox Cache ..265

Chapter 19 » The ColdBox Proxy...281

Chapter 20 » Integrating ColdBox..295

x | P a g e

Chapter 21 » Feed Reading & Generation...325

Chapter 22 » Securing Your Applications ..355

Chapter 23 » Unit Testing Handlers ...369

xi | P a g e

Appendix A » ColdBox Professional Services ..383

Appendix B » License Agreement...385

Index ...389

xii | P a g e

Forward 1

There are a number of very capable frameworks for building
ColdFusion/CFML applications. However ColdBox is both the most
comprehensive and the most thoroughly documented. In addition to
helping you to structure your application and making it easier to
maintain, Coldbox also helps you to write applications that are easier to
test, easier to internationalize and easier to scale.

In this book, Luis has brought together years of experience in
developing high performance, maintainable web applications into a
single, readable book designed to help people to do a better job of
designing and building their applications.

All of the information you need to write great web applications exists online. But Luis has pulled together
the key information - targeted at CFML developers using the ColdBox framework - to make it as quick and
easy as possible to learn how to write better CFML applications using ColdBox.

If you are new to object oriented programming or frameworks, this book is an excellent investment.
Starting with the basics of object oriented programming and best practices like DRY and MVC, it leads you
through the process of understanding how to write maintainable applications using the ColdBox framework.
If you're already a guru, you'll find lots of additional information on the latest features in ColdBox 2.6.
Either way it makes a handy addition to your bookshelf for referring to when developing your applications.

At a time where there is still a lot of confusion about best practices for object oriented application
development in CFML, hopefully this book will provide a starting point for developers interested in
improving their skills - and their applications.

Peter Bell

New York, July, 2009

Forward 2

Preface 1

In late 2005 the first beta of ColdBox appeared on the public ColdFusion scene, even though the core
framework and libraries where started back in 2003 out of a mission critical, high availability project.
ColdBox was born with several key requirements: speed, stability, high availability, ease of use, and
software aspects; Thus, becoming more than MVC. At that time, the business applications at my old
employer needed to be much more than simple MVC methodologies; the plugin architecture of ColdBox
was born from all the ideas of those projects and the fact that applications need so much more than just
separation of concerns. This is where aspects like logging, bug reporting, caching, web services, and so
much more started, from that need. However, I definitely saw that this need was shared among many
developers in order to build small, medium or enterprise applications.

Due to the high success of the initial versions of the framework at that time, I decided to invest myself into
developing a community initiative that became known as ColdBox. I saw the potential of conventions over
configurations, in leveraging the dynamic nature of ColdFusion, in developing the framework as a
ColdFusion application and not a Java application, and the idea of a development platform, not only a
methodology. The idea started small but as usage grew and the potential for setting industry standards in a
ColdFusion community where object orientation had just began, inspired me to dedicate myself
wholeheartedly into the project. I was always taught that adoption comes at a price and that price is
documentation. I was never a documentation guru, or even liked it, but it was something necessary in order
to increase the adaptation rate of what I wanted to be an industry standard for developing ColdFusion
applications. I had seen success first hand and wanted to share it to everybody I could.

Thus, my documentation obsession began. I tried to always comment as much as I could and force myself
to add hints everywhere, because I knew documentation generation would be one of my best friends, and it
has been ever since. I made it a mandate that no release, no matter how simple, would go out unless it was
fully documented and ticketed, which I still maintain up to this day.

As you can see, the roots of ColdBox are ingrained in real life applications, and some even made companies
millions of dollars a month due to its stability and progressiveness. ColdBox has quickly become one of the
industry standards of enterprise ColdFusion development as we, Team Coldbox, are always striving to
break the mold and innovate. With this inspiration at hand, you can now start delving into the ColdBox
Platform and learn how you can start creating small, medium, or enterprise applications with ease.

The official ColdBox wiki contains the latest and greatest documentation and can be found at
www.coldbox.org. At the time of this book writing, ColdBox 3.0.0 is in current development, so I
encourage you to check the sites and resources for the latest ColdBox builds. Once ColdBox 3.0.0 is in the

Preface 2

wild, we will also update this book and create another release to support all of the features and
enhancements ColdBox 3.0.0 will introduce. So enjoy this book and support ColdBox in any way you can.

This book assumes that the reader has at least basic ColdFusion knowledge and some understanding of
MVC methodologies. This book does not go into detail about methodologies or provide as much
instructional content as the ColdBox Platform Training Series courses do. If you are interested in
professional training for you or your organization, please visit our training section at
www.coldbox.org/index.cfm/training or send us an email at training@coldbox.org.

This book is for developers or managers interested in having the latest ColdBox documentation in book
format. This is an excellent reference book and companion to the online documentation. It will give you an
insight of how the dynamic nature of ColdFusion can be taken to its limits by ColdBox, and provide you
with an excellent RAD platform. So if you are already a ColdFusion or any dynamic language fanatic, this
book will give you a jolt of electricity and an understanding of how ColdFusion can be leveraged to make
your development faster, easier and more sustainable.

Furthermore, you will be propelled into learning new technologies and approaches to dynamic
programming in ColdFusion that extends into the development of every layer of a typical web application.
We do not hold back, we want to push the limits and be pioneers in the ColdFusion development arena. So
if you feel like you need a challenge in your ColdFusion development and even Java development. Then
this book will transform your outlook on ColdFusion/Java and Dynamic language development.

You can use this book as an excellent source of reference and introduction into the ColdBox Platform. This
book is composed in a sequential order to give you the most from your reading. If you are looking for
more instructional, step-by-step content, we encourage you to visit our training center:
www.coldbox.org/index.cfm/training and find a suitable training course for you or your organization.

We begin with a high-rise view of the ColdBox Platform and start delving into the basics of object oriented
ColdFusion, ColdFusion components and web application architecture. In proceeding chapters we cover
the essentials of the ColdBox Platform and how to install and maintain it. By chapter 6 we will be
immersed in how to configure ColdBox applications and will start seeing the power of this development
platform. Then we move on to the major components of ColdBox, and discuss how to extend and integrate
it into other frameworks and techonologies.

There is a full chapter on how to secure your ColdBox applications that will put a smile on your face, as
you will be filled with joy of how easy it is to secure applications. We then finally conclude our journey
with an in-depth look at Unit Testing, what we all developers LOVE to do; and I mean that!

Preface 3

The license of the ColdBox Platform is Apache License, Version 2.0:
http://www.apache.org/licenses/LICENSE-2.0

However, the contents of this book and all the online documentation, ColdBox logos and materials are
exclusive property of Ortus Solutions, Corp. You cannot reproduce, distribute or sell this material
without prior consent from Ortus Solutions, Corp. You can find more information about licensing in the
Appendices.

Below are several resources that will help you in your ColdBox development and learning.

http://www.coldbox.org

http://www.luismajano.com

http://www.ortussolutions.com

http://www.coldbox.org/index.cfm/download

http://blog.coldbox.org/

http://www.coldbox.org/index.cfm/support/overview

http://www.coldbox.org/index.cfm/training

http://groups.google.com/group/coldbox

http://twitter.com/coldbox

http://forums.coldbox.org/

Preface 4

http://www.coldbox.org/api/

http://www.coldbox.org/index.cfm/media/tv

http://www.getrailo.com

http://www.adobe.com

http://www.openbluedragon.org

http://www.jquery.com

http://www.mxunit.com

http://www.amazon.com/wishlist/7DPYG3RZG3AF

ColdBox is an open source initiative and it survives thanks to your donations. So please Donate to The
ColdBox Framework or you can visit the Amazon Wishlist.

Please send us your comments, suggestions, and errata to info@coldbox.org with a subject line of ColdBox
Definitive Guide Errata. We will promptly correct the errors or respond to your suggestions for our next
release of this book.

Preface 5

Team coldBox is always in search of people willing to install, test, and debug ColdBox to the max. Here
you can see the people currently involved with ColdBox. They are implementing it on their sites, enhancing
it, testing it or just playing around with it. We also give thanks and recognition to those open source
projects and pieces of code that we have reused in ColdBox. If we have failed to mention code usage here,
please let us know so we can add you.

 Luis Majano - http://www.luismajano.com

 Russ Johnson http://www.angry-fly.com

 Sana Ullah - http://www.sanaullah.co.uk/

 Rob Gonda - http://www.robgonda.com

 Matt Quackenbush - http://www.quackfuzed.com

 Tom de Manincor - http://www.tomdeman.com/

 Ernst Van Der Linden - http://evdlinden.behindthe.net

 Brian LeGros - http://www.brianlegros.com

 Oscar Arevalo - http://www.oscararevalo.com

 Adam Fortuna for ColdCourse - http://www.adamfortuna.com

 Aaron Roberson

 Marc Esher - http://mxunit.org/blog/

 Peter Bell - http://www.pbell.com/

 Ben Garrett

Preface 6

Many thanks to the following people whom I have used their open source projects. Please visit them and
use their software; support open source.

 Blog CFC by Raymond Camden

 Galleon Forums by Raymond Camden

 Zip.cfc by Artur Kordowski

 cfcViewer by Oscar Arevalo

 i18N by Paul Hastings

 Optimization and WS Refresh by Dave Stanten

 Public Issue Tracking & Wiki by Trac

 JavaLoader and Transfer by Mark Mandel

 FileWriter, StringBuffer by Greg Lively

 Illidium PU-36 by Brian Rinaldi

 Brian Kotek’s Projects

Preface 7

Luis Majano is a Computer Engineer with over 10 years of software
development and systems architecture experience. He was born in San
Salvador, El Salvador in the late 70’s, during a period of economical
instability and civil war. He lived in El Salvador until 1995 and then moved
to Miami, Florida where he did his Bachelors of Science in Computer
Engineering at Florida International University. Luis currently works for
ESRI (Environmental System Research Institute) and resides in Rancho
Cucamonga, California with his beautiful wife.

He is also the President of Ortus Solutions, a consulting firm specializing in

Adobe ColdFusion, Java development and all open source professional services under the ColdBox stack.

He is the creator of ColdBox, Codex Wiki (www.codexwiki.org) an open source enterprise wiki system,
and contributes to many open source ColdFusion projects. He is also the Adobe ColdFusion user group
manager for the Inland Empire. You can read his blog at www.luismajano.com/blog

Luis has a passion for Jesus, tennis, golf, volleyball and anything electronic.

 I played volleyball in the Salvadorean National Team at the tender age of 17

 The Lord of The Rings is something I read every 5 years. (Geek!)

 My first ever computer was a Texas Instrument TI-86 in 1986. After 1 month, I had written my
own tic-tac-toe game in Basic at the age of 9. (Extra Geek!)

Luis Majano & Ortus Solutions, Corp will donate 20% of the revenues from this book to charity.

Preface 8

This book or anything ColdBox would not be possible without God’s wisdom and guidance. It is because
of His grace that this project exists and the entire honor goes to God alone. If you are offended by these
statements or do not like them, then don’t read this, it is not for you.

"Therefore being justified by faith, we have peace with God through our Lord Jesus Christ: By whom also
we have access by faith into this grace wherein we stand, and rejoice in hope of the glory of God. And not
only so, but we glory in tribulations also: knowing that tribulation worketh patience; And patience,
experience; and experience, hope: And hope maketh not ashamed; because the love of God is shed abroad
in our hearts by the Holy Ghost which is given unto us. ." Romans 5:5

Keep Jesus number one in your life and in your heart. I did and it changed my life from desolotation, defeat
and failure to an abundant life full of love, thankfulness, joy and overwhelming peace. As this world
breathes failure and fear upon any life, Jesus brings power, love and a sound mind!

Este libro es dedicado a mi esposa Veronica. Gracias por tu paciencia y amor bbita. Es un privilegio ser tu
esposo y saber que estamos en esto juntos. Gracias por tantas noches y fines de semana que sacrificamos
para poder salir adelante con ColdBox y Ortus. Sos mi inspiración y mi motivación bbita, gracias por
entenderme y apoyarme en mi sueño.

Preface 9

Kalen currently develops rich Internet applications for ESRI
(Environmental Systems Research Institute) in Redlands, California. He
graduated from the California State Polytechnic University of Pomona in
2007 with a degree in Computer Information Systems. He's passionate
about programming and enjoys working with many technologies such as
ColdFusion, Flex, AIR, and AJAX. He spends his spare time at home with
his wonderful wife and two children.

Preface 10

Chapter 1 » Getting Started with ColdBox 11

ColdBox is an event-driven, convention, based ColdFusion Development Platform. It provides a set of
reusable code and tools that can be used to increase your development productivity, as well as a
development standard for working in team environments. ColdBox is comprehensive and modular, which
helps address most infrastructure concerns of typical ColdFusion applications. It also goes places that other
frameworks do not.

Fig 1.1: ColdBox Platform Diagram

This section will provide an overview of the main components of this object oriented framework. Below are
some good resources for you to read about design patterns and other object orientation goodness. Having
some basic object oriented knowledge will help you tremendously during your initial stages of ColdBox

Chapter 1 » Getting Started with ColdBox 12

development. However, if you are not an OO (object oriented) guru, no worries, the chapters in this book
will help you and guide you through several learning paths of object orientation and software development.
This is just an introductory section, so you might encounter new terminology or features of the framework
that you might have no clue about. However, do not despair, as it will all come clear as you keep reading.

 Sun's Core J2EE Patterns Catalog

o http://java.sun.com/blueprints/corej2eepatterns/Patterns/index.html

 Catalog of Patterns of Enterprise Application Architecture

o http://martinfowler.com/eaaCatalog/

 What are CFC's by Ben Forta

o http://www.adobe.com/devnet/ColdFusion/articles/intro_cfcs.html

 ColdFusion CFC Tips

o http://www.oreillynet.com/pub/a/javascript/2003/09/24/ColdFusion_tips.html

Fig 1.2: ColdBox MVC Design Pattern

Chapter 1 » Getting Started with ColdBox 13

As you remember from my introduction, I am a firm believer in developer education. There are over 30
step-by-step online guides, over 550 pages worth of documentation right in the online wiki, 2 professional
training courses, and several printed books. It is my belief that by empowering the developer with
knowledge, the adaptation rate will increase, and the ability of the developer to find what they need will
make their development productivity increase.

Conventions over configurations is our motto. We get rid of the verbosity of XML logic and use simple
ColdFusion and a set of conventions for our applications. With ColdBox you can even define your own
application layouts and conventions a-la-carte. This gives great flexibility to developers or organizations
that are used to their own layouts and structures. Conventions are also used for registering events,
interceptors, plugins and much more.

The use of conventions over configurations is what makes ColdBox unique!

ColdBox doesn't rely on XML declarative logic to define events, what they do and where they go. ColdBox
is a conventions based development platform that will let you program in ColdFusion, to get things done
faster and easier. You basically expose methods on event handler CFCs (Controllers) by setting their access
to public or remote. The framework will auto-register the handler CFCs and you will be able to use the
methods as ColdBox Events. So the declarative logic is placed within the methods, where you can place
exit points, what model objects to use and call, what view to render, what event to surrender execution, etc;
but in ColdFusion and not XML. This is how ColdBox can help you create multi-layered applications with
a single skeleton and configuration file. So instead of working with a long and complex configuration file
all the time, you will be mostly working with ColdFusion code all the time. You would simply use the
configuration file to setup your project or maybe tweak some settings.

ColdBox comes bundled with an extensive array of plugins and interceptors that will help you with every
day software application tasks like bug reports and notifications, AOP file logging with auto-archiving, per-
environment settings, storage facilities for cluster environments, object caching, datasource declarations,
web services integrations, internationalization, IoC integrations, application security, SES URL Mappings
and so much more. ColdBox is not only an MVC framework but also a development platform.

The ColdBox Dashboard is a developer tool that helps you configure your platform installation and has
tools for code generation. It is also a self-documenting tool that will help you learn about the framework.

Chapter 1 » Getting Started with ColdBox 14

You can modify all of the framework configurations and read documentation. It is tightly integrated to the
online documentation so you can search the wiki, svn repository, and ticket reports, and much more.

ColdBox has an advanced memory aware and configurable enterprise caching engine. You have several
tuning parameters for the cache as well as visual cache reports in the debugging panel. You can actually see
how many objects and what types of objects are in your cache, the efficiency of your cache and the tuning
parameters. This feature will help developers save time and also provide them with rock solid engine that
can manage object persistence. ColdBox also allows for event caching, in which the HTML output events
produce will be cached by the framework and presented to users. This will enhance applications and system
stability. The best part of it is that you can use metadata in the cfcomponent and cffunction tags to actually
declare caching parameters. ColdBox also allows for extensive view caching and on-demand rendering and
caching capabilities. To top it off, the caching engine has an event broadcaster model built-in that can
advice you of new objects, object removals, JVM garabage collections and much more.

Fig 1.3: Cache Monitor

Chapter 1 » Getting Started with ColdBox 15

ColdBox is a framework based on objects and unit testing is an integral part of development; so why
shouldn't you be able to unit test your handlers, plugins and interceptors? Well, Unit Testing is part of
ColdBox. ColdBox includes a unit testing feature that allows you to do integration testing, unit testing and
even mock objects (3.0 only). It can even provide you with mocking capabilities so you can event test URL
relocations and re-routing.

The ColdBox Proxy enables remote applications like Flex and AIR to communicate with ColdBox,
providing an event model for those applications. Not only that, but you can reinitialize the entire
application, get settings, and yes, announce custom and core interceptions. You can create custom
interceptor chains that respond to model calls and they can even be asynchronously. You can create a
service layer with built-in environmental settings, logging, error handling, event interception and chaining,
you name it, and the possibilities are endless.

Not only that, but also this enables you to create any number of front ends using the same reusable ColdBox
and model code. The code is the same, you create event handlers, you interact with a request collection,
with core and custom plugins, but you don't set views or layouts because the framework is now a remote
framework for your model. So what do you do, well, return data, arrays, XML, and value objects. Anything
you want right from within the event handlers, or you can setup a configuration setting that tells the
framework to always return the request collection.

Chapter 1 » Getting Started with ColdBox 16

Fig 1.4: ColdBox Proxy Eco System

ColdBox uses both implicit and explicit invocation methods to execute events and render content; ColdBox
is an event driven framework. You have a single XML configuration file: coldbox.xml.cfm, from which you
can configure your entire application (No logic, just configuration data). You can use ColdSpring, Transfer,
Remoting, CRUD, Bean/DAO Factories, or any other technology and/or pattern that you can think off with
ColdBox. However, ColdBox does make you adhere to an application directory structure based on
conventions that are fully customizable. This is done for the purpose of creating a standard for all
developers who work in a team and to allow ColdBox to find what it needs. Remember that ColdBox will
not solve all your problems. It is a standard, a foundation to develop upon and thanks to the software
programming aspects that it provides, ColdBox is also a development platform. However, it is up to you to
create GOOD code, this is not a magical framework that will make your code better. It will help you, but at
the end of the day, it is your responsibility.

ColdBox makes use of the Front Controller design pattern as its means of operation while in MVC mode.
This means that every request comes in through a single template, usually index.cfm. Once the framework,
through this front controller, receives a request, it will parse the request and re-directit appropriately to the
correct execution paths. Events are detected by a URL/FORM/Remote variable named event by default.

Chapter 1 » Getting Started with ColdBox 17

This event variable holds a specific pattern that lets the framework know what to execute. This is called
ColdBox event syntax:

 NON SES MODE [handler|package].[action]

 SES MODE /index.cfm/{package}/{handler}/{action}

Note: The index.cfm file can be removed when using a URL rewrite tool like Apache mod_rewrite.

The handler is the name of the event handler CFC and the action is the name of the public or remote method
to execute. You can also prepend package names (directories) of where event handlers can be found. Please
note that our recommendation is to use SES routing so you can create meaningful URI's and abstract the
real names of the handlers and locations.

“You are only limited by your ingenuity” Luis Majano

ColdBox Events can be registered for execution in two different ways. The following events are registered
in the configuration file, which are run implicitly (no need for you to call them):

 Request Start Handler (simulates onRequestStart)

 Request End Handler (simulates onRequestEnd)

 Application Start Handler (simulates onApplicationStart)

 Session Start Handler (simulates onSessionStart)

 Session End Handler (simulates onSessionEnd)

 Default Event (The default event to execute)

 onException (The event to execute when an exception occurs)

 onInvalidEvent (The event to execute when an invalid event is detected)

There are also some more methods that will be executed implicitly by writing the following methods inside
of a handler CFC:

Method Description

preHandler Executes before the requested event (in the same handler CFC)

Chapter 1 » Getting Started with ColdBox 18

postHandler Executes after the requested event (in the same handler CFC)

onMissingAction Executes if an action was requested from this handler but the method does not exist (In the same
handler CFC)

The other approach to executing events is via explicit declarations from within your code using the
runEvent() method. From these events, you declare what business actions to invoke, what view to render,
call/use plugins, and if more events need to be executed (chaining). All these actions are done explicitly;
you define them in CF code and not in XML dialect. The ColdBox controller then implicitly renders
layouts/views that were set by the event handlers and finalizes execution.

One thing to note is that the event handler's events (methods) are very loosely coupled to each other. They
interact on their own, do what they need to do and surrender execution to the framework. As you can see,
due to the nature of event handlers written in ColdFusion, you have explicit declarations that would
otherwise be implicit if done in an XML based dialect. Thus, the cohesion between implicit and explicit
event executions can exist in a ColdBox application. At the end of the day, ColdBox is based on events and
cannot function without them.

ColdBox is configured for operation via a single XML file. You can define the major settings for your
application, what features to use, etc.

ColdBox event handlers are CFC's that act as your application controllers. Most of this topic is covered in
the Chapter 9, but here is a brief introduction:

 First of all, these handler CFC's must extend the ColdBox base event handler CFC:
coldbox.system.eventHandler

 If the CFC implements an init() method, then it must call the base class constructor using the super
method. Remember that if you implement an init method in an event handler, then all the methods
executed from this handler will run the constructor code.

 The CFC's must be placed in the handlers directory under your application, so they can be
registered by conventions.

 You need to create public/remote methods that will respond to events.

 The framework will cache event handlers, and cache metadata can be attached to their
cfcomponent declaration.

On initialization the framework will read your handler’s directory and register the available handlers. Once
an event is detected, the framework will validate both the handler and the method. Therefore, in order to
expose an event to the framework, just create a method in your CFC with public or remote access.

Chapter 1 » Getting Started with ColdBox 19

Event handlers can also be called from remote applications such as Ajax and Flex via the ColdBox Proxy.
You can even determine if an incoming request is an MVC or remote request and react accordingly. In
remote mode, your event handlers can return data instead of rendering views.

ColdBox also uses a request collection data structure where all variables can be stored and shared among an
execution request. The request collection is a central repository of information that is refreshed on every
user request with the request's information. This is how data gets moved around from event handlers to
views and layouts to plugins and anything running inside of the framework and in the MVC layers. The
object containing the request collection is the request context object found at
coldbox.system.beans.requestContext. Not only can you use the request context object but also you can
decorate it!

You can expand its functionality according to your needs; refer to Chapter 8 to help you learn more about
how to extend the core framework’s functionality. The request context is not a mere data structure where
you get and set values, but an object that is used for setting views or layouts for rendering, caching views,
getting event metadata, determining what is being executed and so much more.

Another important ColdBox feature is the use of a plugin library of CFCs that extend the normal usage of
ColdBox to application specific tasks, without hindering system performance. These plugins are reusable
components that your application can use and can be loaded on demand via the ColdBox Plugin Factory.
Some samples are: i18n, resource bundles, refresh a webservice stub, Bug Reports, Java file utilities, etc.
This is a major difference between ColdBox and any other framework, in that it gives you a set of reusable
on-demand components for tedious or repeatable application specific tasks.

Also, not only can you use and modify the plugins that come with every ColdBox installation, but also you
can create your own. You are not limited to what we provide, you can extend the framework to meet your
needs. You can create as many plugins as you want and build a plugins library that can be registered by just
specifying it on the configuration file or can be loaded purely by conventions . You will then be able to get
the plugin and use it on any of your ColdBox applications. The best part of it all is that the plugin will
inherit all of the framework's functionality, so you have everything that you need to be able to code.

Chapter 1 » Getting Started with ColdBox 20

Fig 1.5: Interceptor Sequence Diagram

ColdBox interceptors increase functionality for applications and framework alike, without touching the core
functionality, and thus encapsulating logic into separate objects. This pattern wraps itself around a request
in specific execution points in which it can process, pre-process, post-process and redirect requests. These
interceptors can also be stacked to form interceptor chains that can be executed implicitly. The chaining is
all about positioning in the configuration file. The order of declaration is very important. These stacked
interceptor chains form a sequence of separate, declaratively deployable services to an existing web
application or framework without incurring any changes to the main application or framework source code.
This is a powerful feature that can help developers and framework contributors share and interact with their
work.

Interceptors are a great compliment to ColdBox plugins, they can be used alongside them and implicitly add
functionality to a ColdBox application. Another important aspect to note is that interceptors have full access
to a request's lifecycle and the framework. Thus, they can get application settings, redirect control, execute
events, use the cache manager, get plugins, transform views, adapt views for certain protocols and much
more.

Chapter 1 » Getting Started with ColdBox 21

Fig 1.6: Simple Interceptor Overview

Below are just a few applications of ColdBox Interceptors:

 Event based security

 Method tracing

 AOP interceptions

 Publisher/Consumer operations

 Implicit chain of events

 Content appending or pre-pending

 View manipulations

 Custom SES support

 Cache advices on insert and remove

 Much more...

We went a step further with interception points and created the hooks necessary in order to implement an
observer/observable pattern into the entire interceptor service. What does this mean? It means that you are
not restricted to the predefined interception points that ColdBox provides; you can create your own WOW!

Chapter 1 » Getting Started with ColdBox 22

Really? Yes, you can very easily declare execution points via the configuration file or register them at
runtime; create your interceptors with the execution point you declared (conventions baby!) and then just
announce interceptions in your code via the interception API.

“The power of conventions in its full strength.” Luis Majano

However, not only can you intercept at an execution point, but you can actually send a structure of
intercepted data right into the interceptor. You can use these custom interceptors as a set of listeners waiting
for broadcast information. You can even create chains of listeners for the same message.

I hope that this overview has given you an insight into how powerful ColdBox is for building your web
applications whether they are small or enterprise. It is a new generation framework based on conventions
that will increase your productivity and adaptability in a team environment.

Welcome to the ColdBox Platform!

Chapter 3 » ColdFusion Components & OO Terms 37

Before we start devling into the nitty gritty of ColdBox, in this chapter I would like to focus on the basics of
ColdFusion Components and some object oriented terminology. This section will cover what we (Team
ColdBox) believe to be best practices for developing components (objects) in ColdFusion. It will also
introduce some great object oriented terms so we can all be on the same level once we start digging further
into ColdBox. So let’s begin.

Fig 3.1: Simple Object Representation

The object oriented paradigm centers on the concept of an object and not functions. Functions are what an
object provides in order to interact with it. In its core, an object is a state of being that has an identity, a
purpose and a set of responsibilities. Think of objects as nouns in the bare minimum, such as students,
courses, instructors, etc. The key to good object orientation is to know an object’s identity or state of being.
This is commonly called as Ontology or the study of Ontology.

Ontology describes or asks, what constitutes the identity of an object?

Chapter 3 » ColdFusion Components & OO Terms 38

So as you start analyzing and creating object oriented applications, you always have to keep in mind what
are the object’s responsibilities and most importantly, the object’s identity. A good design rule is that an
object should be responsible for itself and should have its responsibilities very clearly defined. At the
implementation level, an object is purely code and data.

A CFC is short for ColdFusion component. A CFC is the way to represent objects programmatically in
ColdFusion. It has a set of conventions, tags and syntax that will enable you to program objects. A CFC is
declared by the cfcomponent tag, and methods are defined with the cffuntion tag. We will not cover all the
details about these tags here; we are just covering the best practices for programming ColdFusion
components as we do it in the ColdBox team.

<cfcomponent name=“Student” output=false hint=“My student object”>

<cfscript>
 instance = structnew();
 instance.name = “”;
</cfscript>

<cffunction name=“getName” returntype=“string” access=“public”>
 <cfreturn instance.name>
</cffunction>

<cffunction name=“setName” returntype=“void” access=“public”>
 <cfargument name=“name” type=“string”>
 <cfset instance.name = arguments.name>
</cffunction>

</cfcomponent>

Let’s review some object oriented terminology so that we can get into that learning mood.

 Class: ColdFusion CFCs : A blueprint of an object. Typically they have methods/functions and
instance data.

 Constructor: A method responsible for object creation and for preparing an object for usage.

 Attributes: Instace data associated with an object (data members). They can also have an access
type or visibility.

 Access Type: A visibility property for attributes and functions, if exposed as public then it
becomes part of the object’s public API. Usual visibility types in ColdFusion are public, private,
package, remote.

Chapter 3 » ColdFusion Components & OO Terms 39

 API: Application Programming Interface. An API implements information hiding by its exposed
(public) members (functions) and attributes (properties).

 Methods: Functions associated with an object. If they are exposed as public they become part of
the object’s API.

 Accessors/Mutators: Accessors are usually referred as “getters” or “get methods” that retrieve
instance data. Mutators, as the word delineates, changes the instance data via a “set method” or
”setter”.

 Encapsulation: Information hiding by usage of methods and their visibility types. It is also the act
of creating methods for anything that varies within your objects. DRY (Do not repeat yourself).
Makes writing code easier as external forces only interact with the object’s public API and do not
need to know how the object is written or its internal properties and methods.

 Instance: A particular object of a class (component); creating a class or instantiating a class object.

 Derived Class (Inheritance): A class that is specialized or derived from a parent class
representing an “is-a” relationship or taxonomy. Ex: Cat “is an” Animal. The derived class
contains all the properties and methods of the parent class but can also contain more properties and
methods.

 Composition: Object composition exists when a class has another class for a property or part of its
instance data. The composite class often handles the creation of the composite parts. A car class
can have a composite of engine or multiple tires, for example. Composition denotes a tight
coupling between the classes, if the class composed of other classes is destroyed, all the composite
classes are destroyed also.

 Aggregation: Follows the same principle as object composition with the distinct difference that
the composite part’s lifespan is NOT controlled by the agregee. For example, a parking lot object
is composed of 0 or more car objects. However, if we destroy the parking lot, the cars do not get
destroyed.

 Design Patterns: A time-tested architectural solution to a recurring problem. They do not solve all
problems but are great references for common solutions.

 Coupling: The degree in which each program module relies on each one of the other modules in a
system. We want low coupling in order for modules to not have tight dependencies to other
modules. Why? Well, one small change in a tighly coupled class could wreck havoc in an entire
set of other classes. The more we decouple our code, the more sustainable our applications will
become.

 Cohesion: Measures of how strongly related or focused are the responsibilities of an object. An
object must do one thing and do it right. We want high cohesion. Why? If not, our objects will
start becoming GOD objects, where they do everything or more than they should. This introduces
complexities and makes maintenance more difficult.

 DSL: Domain Specific Language is a programming language or specification dedicated to a
particual problema domain, representation or technique.

Chapter 3 » ColdFusion Components & OO Terms 40

We will start covering all the best practices for ColdFusion components in this section in no particular
order. Please note that almost all of ColdBox’s interactions are via CFC. Therefore, it is essential and
necessary to present several best practices for CFC’s that will apply to almost all of ColdBox application
development. You can find a more in depth article about best practices online in our wiki. Our best
practices shown here are a composition of best practices from the ColdBox Team and many online
resources:

 http://ortus.svnrepository.com/coldbox/trac.cgi/wiki

 Sean Corfield’s CFC Best Practices Document

o http://www.corfield.org/

 http://www.adobe.com

 http://cfdj.sys-con.com/read/41660.htm

Note: At the time of writing our wiki was in transition to http://wiki.coldbox.org where you can find our
latest guides and information.

ColdFusion components should always have a method called init() that will act as your constructor. This is
how your CFC is initialized and prepares your instance for usage; it should always returns the this scope.
By returning the this scope, you are returning the instance of the CFC as a reference object to the caller
object or page.

<cffunction name=”init” output=”False” returnType=”{filename}” hint=””>
 <cfreturn this>
</cffunction>

Single responsibility means that your CFC must adhere to its responsibilities ONLY. If you find yourself
with a CFC with over 500 lines of code, then it might be of good wisdom to determine if it is doing more
than it should. If it is, then you need to separate or refactor your code into other objects. There are very
rare cases where an object can get this long and just do one set of responsibilities, but it is possible. Good
judgment should be used.

If you find yourself writing methods that are over 30-50 lines of code, you might also want to revise your
work. You might find that a method is doing too much and it needs other methods to help out.

The two major visibility scopes that ColdFusion gives us inside of components are:

Chapter 3 » ColdFusion Components & OO Terms 41

 variables : private scope

 this : public scope

<cfset address = CreateObject("component","address").init()>
<cfset variables.address = CreateObject("component","address").init()

Both lines of code above are the same. As the variables scope is the default scope in a page and CFC, so it
is not necessary to scope it if you so desire.

It is also very important to realize that these scopes are not only used for attributes but also for methods.
The ways that ColdFusion stores public methods are by placing them in the this and variables scopes. If
you write a private method, then ColdFusion places it in the variables scope only. If you write a public
method, then ColdFusion places it in both the variables and the this scopes. Therefore, it is very important
to realize what these scopes do and what they represent.

<cfset this.OPTIONS = "add,remove">
<cfset this.NOT_FOUND = '_NOTFOUND_'>
<cfset this.EVENT_CACHEKEY_PREFIX = "cboxevent_event-">

Public variables are declared in the this scope. Be very careful of when to make internal properties public,
as you will be violating encapsulation (look at next sections). One of the best reasons for making variables
public is if they do not change or can act like static constants. If your variable does not meet this criteria,
then DO NOT expose it as public. However, please remember that this is a guideline and not a rule. Also
note that if you declare an attribute as public, it can be easily changed by an outside force. You have no
control of the data of this variable or how it will be used. Therefore, if you do not need to expose it, then
hide it. This is also referred to as information hiding. Outside forces DO NOT need to know how you store
your data, they are concerned with what you offer via your public methods (API)

A good best practice is to create a virtual scope as a private attribute of a CFC. You can do this in the
CFC’s pseudo constructor (space between the cfcomponent tag and the first method) or constructor (init()
method). A sample is found below:

<cfset instance = structnew()>
<cfset instance.firstname = "Luis">
<cfset instance.lastname = "Majano>

The purpose behind this approach is to create a structure holder for all the instance data that is separate
from the CFC’s methods. This is also a real benefit when implementing a Memento pattern or State pattern
where all instance data of an object can be serialized or deserialized into an object. You can very easily
move the state of this object to another object by implementing some memento methods:

Chapter 3 » ColdFusion Components & OO Terms 42

<!--- Getter/Setter memento --->
<cffunction name="getmemento" access="public" returntype="struct"
 output="false" hint="Get the memento">
 <cfreturn variables.instance>
</cffunction>

<cffunction name="setmemento" access="public" returntype="void"
 output="false" hint="Set the memento">
 <cfargument name="memento" type="struct" required="true">
 <cfset variables.instance = arguments.memento>
</cffunction>

Encapsulation provides the basis for object orientation by providing information hiding from the outside
world for an object. Encapsulation is achieved by designing objects with public methods that expose
functionality rather than direct manipulation of the object’s internals via properties or attributes.
Encapsulation is achieved by declaring access types of variables as private. This gives access to data to
only public/package member functions of the CFC. You can then create their mutators and accessors via
“public” methods. Some benefits of encapsulation are:

 You can keep the exposed API the same while changing how your CFC works internally without
breaking any code that uses your CFC. You can refactor your code with ease.

 Prevents the consuming developer from getting in trouble by violating your internal assumptions
about how the instance data works, since all functionality is exposed as methods.

 It hides all of your implementation and presents a good public API.

 Writing code is easier as team members only have to interact with this API instead of how the
object works under the hood.

 As a rule of thumb, encapsulate anything that varies.

DRY: Do not repeat yourself!

Do not directly refer to external scope variables (i.e.: session/application/client/server/form/url/request
variables) inside a CFC, especially in ColdBox. When in doubt, preserve encapsulation. The one exception
is when building facades or proxy objects for web services/flash remoting or special encapsulations. If you
do not know what a façade or proxy is, then please do a web search for “façade or proxy pattern”. It
basically encapsulates a shared scope such as application, session, etc in an object. Why? If you reference
variables in a CFC you are binding or coupling yourself to that scope and variable existence from within
your object, when your object might just need that data passed throught to it. Maintenance will increase
exponentially and unit testing these objects become harder to do.

Chapter 3 » ColdFusion Components & OO Terms 43

Use the output attribute in your cffuntion and cfcomponent tags. Do not output directly to the output buffer
inside a CFC method - instead return a string. The main reason is that you don't want to break encapsulation
and be outputting content from all kinds of places. By outputting directly to the output stream you assume
knowledge of the external environment of the CFC, but if you return a string you get the exact same
behavior without breaking encapsulation. Never assume that the CFC will run when you want it to run,
especially when dealing with threaded requests.

<cfoutput>#myCFC.getSomeHTML()#</cfoutput>

On very rare cases you would want to output to the buffer, but avoid it at all costs. As a last note, if you do
not use output=false on cfcomponent and cffunction tags, you most likely will be producing the dreaded
ColdFusion whitespace in your rendered HTML. So make sure you use this attribute to prevent
unnecessary whitespace in your rendered HTML.

Naming conventions are not strict but sure make life easier when everything that you read makes sense. Use
good names for components, methods, arguments and local variables. This can sometimes be a disaster if
developers choose random names or non qualified names for methods, arguments and local variables. Most
of the naming conventions that we follow in Team ColdBox are those designed by the Java Community.

 Camel case your component names and capitalizing the first letter: UserService.cfc,
HTTPFacade.cfc, SessionService.cfc. If your component name uses acronyms, make sure that you
capitalize all of them, e.g. HTTP, URL, etc. However, try to avoid them if necessary.

 Try to keep your component names simple and descriptive.

 Interfaces should be capitalized and be used just like component names.

 Camel case your methods and arguments without capitalizing the first letter: isOpen(), getString(),
authenticateUser(), tokenStream(). Try to use verbs when possible.

 Camel case your instance data members without capitalizing the first letter just like methods and
arguments.

 Try to ALWAYS name your variables in a descriptive and non-cryptic manner.

 Although constants do not exist in ColdFusion, you can distinguish them by UPPER casing them.

 Lower case your package (directory) names if at all possible.

Use the returntype attribute of cffunction and the type attribute of cfargument to create documentation and
for runtime type checks. Don't forget that "void" is the returntype when not returning anything from a
method.

Chapter 3 » ColdFusion Components & OO Terms 44

Duck Typing is used by setting the returntype or type to any. This is a useful technique when dealing with
such a dynamic language as ColdFusion. This means that the argument or returntype returned can be
ANYTHING, so your object needs to determine what to do with it and what the object’s identity is based on
preset conventions. This is what makes a dynamic language like ColdFusion so powerful; we do not have
to rely on type checking in order to program. However, with so much power, we must have responsibility
because now we do not get the benefit of compile time checks, so we need to do runtime checkings. This is
why unit testing is SO important when building dynamic objects in ColdFusion.

A side effect of not using a strong type is a speed enhancement, since ColdFusion does not check the
validity of the types. This side effect should not be used to get more performance, unless you really are
desperate for it. Also note that by providing a returntype or type of Any, you will loose all documentation
for it; so make sure to include hint attributes. So if you are building publicly consumed APIs or libraries,
try to avoid Duck Typing unless you want objects or arguments to be dynamically determined at runtime.

Document your component, methods and arguments by using the hint attribute in those tags. This will help
fellow developers and even you, when determining what a method, argument or component can do, etc.
You can also use several tools to create CFC documentation according to your component’s metadata. The
ColdBox team tends to always use ColdDoc by Mark Mandel (colddoc.riaforge.org).

In general, non-required arguments of a CFC method should have a DEFAULT specified unless you will be
determinining them via existence, which can also be a good strategy. However, we always try to have
defaults if possible.

Always, always, always use "var" for local variables inside your methods, including ALL loop counters,
temporary variables, queries, cfhttp variables, etc. This is called “var scoping”. If you do not do this, your
component will not be thread-safe. This means that if somebody persists (stores) this component in
memory, succinct calls can and will override variables and create all sorts of memory problems.

There is an open source project called varscoper that can check all of your components for var scoping
issues, even if they are using cfscript. (varscoper.riaforge.org)

<cffunction name="myFunction" access="public" returntype="void" output="false"
hint="This methods does nothing">
 <cfset var i = 0>
 <cfset var qGet = 0>
 <cfquery name="qGet">
 Select * from test
 </cfquery>
 <cfloop from="1" to ="20" index="i">

Chapter 3 » ColdFusion Components & OO Terms 45

 <!--- Do Something --->
 </cfloop>
</cffunction>

I cannot stress the importance of var scoping your variables. Especially when creating variables in your
ColdBox handler CFCs, you will go crazy trying to find how variables change by themselves.

VAR SCOPE EVERY VARIABLE!

Use inheritance only when describing an "is-a" relationship, not for a "has-a" relationship or for code reuse.
For a nice summary, visit http://cnx.rice.edu/content/m11709/latest/. If you need an object to reuse tons of
methods PLEASE do not look to inheritance immediately. Take your time and evaluate the situation.
Inheritance is fragile and extremely brittle as changes affect an entire tree of classes at compilation and not
at runtime. If you want to bring in behavior and functions into an object at runtime, then look to object
composition.

Use Inheritance when you can justify taxonomy of components.

Always prefer object composition over inheritance. This is where another component is created or injected
as a property of the object at hand. There are several reasons why you should choose composition over
inheritance. Some resources are:

 http://brighton.ncsa.uiuc.edu/prajlich/T/node14.html

 http://www.artima.com/lejava/articles/designprinciples4.html

 http://guidewiredevelopment.wordpress.com/2009/02/05/favoring-composition-over-inheritance/

The underlying argument is that composition brings in functionality or behavior at runtime instead of at
compilation time. This makes your objects much more sustainable and flexible as they don’t have to rely
on compilation time restrictions.

Variables pass in and out of components by reference or by value. “By reference” means that if the variable
is changed inside of the component call then the changes are also reflected outside of the component call.
Basically, the variable is a reference or pointer to the value in memory. “By value” means that the
variable’s value is passed and not its reference. Therefeore, the value can change without affecting the
original variable value. For instance, strings, arrays, numbers, and dates all pass by value, but structures,
queries, and all other "complex" objects (including CFC instances) pass by reference. Important caveats to

Chapter 3 » ColdFusion Components & OO Terms 46

notice about the types that are passed by value are that arrays are also passed by value. To us, passing
arrays by value is completely unnecessary as in Java they are by reference. However, this is how Adobe
ColdFusion has implemented them and you need to understand that this might not be the case in other
CFML engines or languages.

Important: Please also note that CFML engines like Railo pass arrays by reference instead of by value.

Unit testing is essential when building object oriented applications because it allows you to test individual
components and make sure that they work without constructing entire object graphs. There are great tools
out there to help you test CFCs like:

 MockBox – The ColdBox mocking/stubbing framework (Included with the ColdBox Platform
3.0.0)

 MXUnit – http://www.mxunit.org

 cfcUnit - http://www.cfcunit.org/cfcunit/

 cfUnit - http://cfunit.sourceforge.net/

Do not be afraid of testing or creating tests, they are rather easy. Get out of your comfort zone and just do
it. What will I get in return, you might ask? Well, I can’t promise that your code will be better, but it will
sure be more robust. You can also create tons of suites and automate your testing before deploys, this
assures you (almost 90%) that your code will work as it should once deployed.

Unit testing will also introduce you to more tools for your arsenal and even encourage you to use other
technologies like ANT, Maven or other deployment mechanisms that may make your life much easier.

I hope that you now have a better understanding of components, objects and their best practices. ColdBox
extensively uses ColdFusion components and object oriented terminology and patterns. Therefore, we
encourage you to take time and learn new technologies and methodologies. You will see the power of
object orientation and how your applications will become more extensible and maintainable.

Welcome to OO & let the journey begin…

Chapter 14 » Model Integration 207

What is model integration? Well, model integration is an easy and maintainable way of creating, retrieving
and using domain model objects within a ColdBox application. The ColdBox team really saw that
developers needed an easy and powerful way of accessing domain model objects that would not sacrifice
performance, ease of use and adaptability. We were hesitant about doing model integration for quite a
while, but we saw all the benefits that it could bring. Not only that, as this book is written, the original
model integration code is being abstracted into its own standalone service called BlenderBox. This service
will provide all of the model integration features, inversion of control, dependency injection, annotations,
AOP, etc to any ColdFusion based application; it won’t even require ColdBox MVC if it so desired.
However, by using ColdBox MVC you get many more benefits. So you can consider model integration to
be ColdBox’s own internal inversion of control framework but with what we know, love and cherish:
conventions.

Again, model integration helps you create, manage, and use model (business logic) objects very easily
within any ColdBox application. You will find that the model integration can also be used alongside object
caching or even object factories like ColdSpring and LightWire. However, the main purpose for model
integration is to make developer's development workflow easier and faster! And we all like that Easy
button!

This integration will give you a good kick start on dependency injection, caching, persistence, etc without
you learning an XML declarative language. Some very simple conventions are all you need to get you
started. Now, what does model integration do for you?

 Easily create and retrieve model objects by using one method: getModel() from handlers, plugins
and interceptors

 Easily handle model dependencies by using cfproperty, constructor argument conventions or old-
fashioned setters. In other words, we have our own dependency injection framework based on
conventions.

 A conventions DSL (Domain Specific Language) has been created in order to facilitate what
objects/data needs to be injected in the models (don't shiver with fear yet, please keep reading)

 Persistence: use the same rock solid ColdBox cache to persist model objects by using CFC cache
metadata. You can now have services that can adjust according to available memory

 Easily create model mappings or aliases for any model class

 Easily populate model objects with data from a request: populateModel()

Chapter 14 » Model Integration 208

The model layer represents your data structures and business logic. A good definition of a domain model is

The domain-specific representation of the information that the application operates on.

Many applications also use a persistent storage mechanism (such as a database) to store and retrieve data.
MVC does not specifically mention the data access layer because it is understood to be underneath or
encapsulated by the model layer. This is the most important part of your application and it is usually
modeled by ColdFusion components. You can even create the entire model layer in another language or
physical location (web services). All you need to understand is that this layer is the layer that runs the logic
show! For the following example, I highly encourage you to also do UML modeling, so you can visualize
class relationships and design.

A simple example can be described like so. Let's say that you want to build a simple book catalog and you
want to be able to do the following:

 List how many books you have

 Search for a book by name

 Add Books

 Remove Books

 Update Books

Very straight forward, right? Anyways, you want to apply best practices and use a service layer approach
for your application and model design. You will then use these service objects in your handlers in order to
do the business logic. Repeat after me: I WILL NOT PUT BUSINESS LOGIC IN EVENT HANDLERS!

The whole point of the model layer is that it is separate from the other 2 layers (controller and views).
Remember, the model is supposed to live on its own and not be dependent on external layers (Decoupled).
From these simple requirements I will create the following classes:

 BookService.cfc

 Book.cfc

Chapter 14 » Model Integration 209

Service Layer

Fig 14.1 : Service Layer Diagram

“A Service Layer defines an application's boundary [Cockburn PloP] and its set of available
operations from the perspective of interfacing client layers. It encapsulates the application's
business logic, controlling transactions and coordinating responses in the implementation of its
operations.” by Martin Fowler

A service layer approach is a way to architect enterprise applications in which there is a layer that acts as a
service or mediator to your domain models, data layers and so forth. This layer is the one that event
handlers or remote ColdBox proxies can talk to in order to interact with the domain model. I won't go deep
into service layer design or approaches as there are various considerations and opinions on what exactly to
put on them or how to layer them. I want to concentrate and challenge you to try these approaches out and
learn from your experiences. I believe there is NO SILVER BULLET on OO design, just stick to best
practices and practice code smell. Code smell is a term to describe an instinct that you may develop once
you start building your applications. This instinct usually tells you when code is written in a bad manner or
might be problematic in the future. Consider it as your coding instincts.

Chapter 14 » Model Integration 210

The BookService object will be my API to complete the operations mentioned in my requirements and this
is the object that will be used by my handlers. My Book object will model a book's data and behavior. It will
be produced, saved and updated by a BookService object and will be used by event handlers in order to
populate them with data from the user. The view layer will also use the Book object in order to present the
data. The event handlers are in charge of talking to the domain model for operations/business logic,
controlling the user's input requests, populating the correct data into the Book model object and making sure
that it is sent to the BookService for persistence.

Now, if I know that my database operations will get very complex or I want added separation of concerns, I
could add a third class to the mix: BookGateway.cfc that could act as my table gateway object or data
access object, take your pick. Now, there are so many design considerations, architectural requirements and
even types of service layer approaches that I cannot go over them and present them. My preference is to
create service layers according to my application's functionality (encompassing one or more persistence
tables) and create gateways-DAO when needed. Please also note that I consider a gateway or DAO to be
interchangeable. It just means that it is a data layer, don’t go creating a gateway and DAO object for a
table, this will create an anemic model. The idea is that you have a data layer, that you call it is your
business. I usually call them Data Access Objects (DAO).

The important aspect here is that I am thinking about my project's OO design and not how I will persist the
data in a database. This, to me, is key! Understanding that I am more concerned with my object's behavior
than how will I persist their data will allow you to concentrate your efforts on the business rules, model
design and less about how the data will persist. Don't get me wrong, persistence takes part in the design, but
it should not drive it.

So what can Book.cfc do? It can have the following private properties:

 name

 id

 createdate

 ISBN

 author

 publishDate

It can then have getters/setters for each property that I want to expose to the outside world, remember that
objects should be shy and only expose what needs to be exposed. Then I can add extra functionality or
behavior as needed. You can do things like:

 Have a method that checks if the publish date is within a certain amount of years

 Have a method that can output the ISBN number in certain formats

 Have a method that can output the publish date in different formats and locales

 Make the object save itself or persist itself (active record)

 And so much more

Chapter 14 » Model Integration 211

Fig 14.2 : Book Model Object

Now, all you OO gurus might be saying, why did he leave the author as a string and not represented by
another object. Well, because of simplicity. The best practice, or that code smell you just had, is correct.
The author should be encapsulated by its own model object Author that can be aggregated or used by the
Book object. I will not get into details about object aggregation and composition, but just understand that if
you thought about it, then you are correct. Moving along... Your objects are not always supposed to be
dumb, or just have getters and setters (Anemic Model). Enrich them please!

Let’s go back to the BookService object. This service will need a datasource name (which could be
encapsulated in a datasource object) in order to connect to the database and persist data. It might also need a
table prefix to use (because I want to), which comes from a setting in my application's configuration file.
Okay, so now we know the following dependencies or external forces:

 A datasource (as an object or string)

 A setting (as a string)

I can also think of a few more methods that I can have on my BookService object:

 getBook([id:string]):Book
This method will create or retrieve a book by id

 searchBook(criteria:string):query
This method can return a query or array of books if needed

 saveBook(book:Book):void
Save or Update a book

 deleteBook(book:Book):void
Delete a book

Chapter 14 » Model Integration 212

Fig 14.3 : BookService Model

I recommend you model all your class relationships in UML class diagrams to get a better understading for
them. Anyways, that's it, we are doing domain modeling. We have defined a domain object called Book and
a companion BookService object that will handle book operations. Now once you build them and UNIT
TEST THEM, yes UNIT TEST THEM (Chapter 23). Then you can use them in your handlers in order to
interact with them. As you can see, most of the business rules and logic are encapsulated by these domain
objects and not written in your event handlers. This creates a very good design for portability, sustainability
and maintainability. So let's start actually seeing how to write all of this instead of imagining it. In Figure
14.4 you can see a more complete class diagram of this simple example.

Chapter 14 » Model Integration 213

Fig 14.4 : Book Domain Model

All your model objects will be located in your model folder of your application root. This is a convention
and can be changed if you so desire by updating the modelsLocation setting in the Conventions element of
your configuration file. You can also change it for the entire framework installation in the ColdBox
settings file: coldbox/config/settings.xml.

ColdBox Configuration File:

<Conventions>
 <handlersLocation></handlersLocation>
 <pluginsLocation></pluginsLocation>
 <layoutsLocation></layoutsLocation>
 <viewsLocation></viewsLocation>
 <eventAction></eventAction>
 <modelsLocation></modelsLocation>
</Conventions>

Chapter 14 » Model Integration 214

You can also have an external location for your model objects by using a ColdBox setting:

 ModelsExternalLocation : This setting is the base instantiation path of the model folder.

<Setting name="ModelsExternalLocation" value="coldboxlibrary.models" />

This gives you the ability to create centralized locations for model objects that you can easily bring in to
your applications. ColdBox 3.0.0 will offer you the ability to have a list of package names that model
integration will scan for you.

Important: Model objects in your conventions take precedence over the external location.

There are also several other ColdBox settings that deal with model integration. Below is a nice chart of all
the settings you have available.

Setting Type Default Description

ModelsObjectCaching boolean true Tells the bean factory to cache model objects if cache
metadata is found

ModelsSetterInjection boolean false Use setter injection alongside metadata injection

ModelsDebugMode boolean false Logs model creation and injections

ModelsDICompleteUDF string onDIComplete The global name of the UDF to call after injections (if found
in CFC)

ModelsStopRecursion string
(list)

--- A comma-delimmitted list of class names where the factory
should stop recursion Ex: transfer.com.TransferDecorator

ModelsExternalLocation string --- The base instantiation path of where external model objects
can be located

<Setting name="ModelsObjectCaching" value="true" />
<Setting name="ModelsSetterInjection " value="false" />
<Setting name="ModelsDebugMode" value="false" />
<Setting name="ModelsDICompleteUDF" value="onDIComplete" />
<Setting name="ModelsStopRecursion"
 value="transfer.com.TransferDecorator,model.base.BaseService" />
<Setting name="ModelsExternalLocation" value="externallibrary.models" />

Chapter 14 » Model Integration 215

The following usage methods are available in all handlers, plugins and interceptors. The getModel() method
is also available for all unit testing classes and the ColdBox Proxy.

 getModel(string name, [boolean useSetterInjection=false],
 [string onDICompleteUDF=onDIComplete], [boolean debugMode=false])

 populateModel(any model, [string scope=none], [boolean trustedSetter=false])

The getModel() method has 4 named arguments:

Argument Required Default Description

name true --- The name or alias of the model object

useSetterInjection false false You can turn it on to do both setter injection and mixin injection

onDICompleteUDF false onDIComplete This means that if the object has an onDIComplete() method, it
will be called after the object has been created and all
dependencies have been injected to it

debugMode false false You can turn it on and it will log out creations and dependencies
in your log file

stopRecursion false --- A comma-delimmitted list of class names that the factory should
stop the recursion looking for dependencies on

The populateModel() has 3 named arguments:

Argument Required Default Description

model true --- The name/alias of a model object or an actual instantiated object to populate

scope false --- If a scope is sent, then the bean factory will populate the variables that match
the desired scope name with the request collection name. Great if you do not
want to expose setter methods

trustedSetter false false This flag tells the bean factory to call the setter methods without checking if
the setter mehod exists. Great for using implicit setters or onMissingMethod
setters

Chapter 14 » Model Integration 216

<cfset var oUser = getModel('User')>
<cfset populateModel(oUser)>

<!--- OR use the shorthand notation --->
<cfset var oUser = populateModel("User")>

ColdBox has a nice DSL (Domain Specific Language) for dependency injection via cfproperty, cffunction
and cfargument markers. This is just an extension to what has been available since the ColdBox 2.0X series
started. Not only does the DSL type apply to model objects but to anything that is autowired in ColdBox:
plugins, handlers, interceptors, ioc produced beans, on demand autowiring and now model objects. Chapter
17 covers extensive autowiring techniques. This section is important because it explains how you can wire
up your model objects with the dependencies they need. In addition, it will also show you how to wire up
these model objects in your handlers, plugins and interceptors. Below is the cfproperty definition:

 name : The name of the property to be injected

 type : The type of property to inject (see chart)

 scope (optional) : Into which scope to inject the object/setting to. Defaults to variables scope

The following DSL is how you specify to the framework what dependency you want.

Type Description

ioc Get the named ioc bean and inject it. Name comes from the cfproperty name or
argument name

ioc:BeanName Get the ioc bean according to bean name in DSL

ocm Get the name key from the ColdBox cache and inject it. Name comes from the
cfproperty name or argument name

ocm:ObjectKey Get the object from the ColdBox cache according to DSL object key

model Get a model with the same name or alias as defined in the cfproperty
name="{name}" attribute. Name comes from the cfproperty name or argument
name

model:{name} Same as above but it will get the {name} model object from the DSL and inject it

model:{name}:{method} Get the {name} model object, call the {method} and inject the results

Chapter 14 » Model Integration 217

webservice:{alias} Get a webservice object using an {alias} that matches in your coldbox.xml

coldbox Get the ColdBox controller

coldbox:setting:{setting} Get the {setting} setting and inject it

coldbox:plugin:{plugin} Get the {plugin} plugin and inject it

coldbox:myPlugin:{MyPlugin} Get the {MyPlugin} custom plugin and inject it

coldbox:datasource:{alias} Get the datasource bean according to {alias}

coldbox:configBean Get the config bean object and inject it

coldbox:mailsettingsbean Get the mail settings bean and inject it

coldbox:loaderService Get the loader service

coldbox:requestService Get the request service

coldbox:debuggerService Get the debugger service

coldbox:pluginService Get the plugin service

coldbox:handlerService Get the handler service

coldbox:interceptorService Get the interceptor service

coldbox:cacheManager Get the cache manager

Note: The model integration feature supports multiple levels of inheritance. The internal bean factory will
inspect all the cfproperties and setter methods throughout the inheritance chain.

You can easily use the mentioned DSL to wire up a model object's constructor method init() by placing a
marker annotation on the arguments. A marker annotation is just another attribute to the cfargument tag.
Remember that ColdFusion allows you to add ANY attributies to certain tags and they will be just
considered extra metadata.

For setter methods, you place the marker in the setter method and not the argument. The default attribute is
called: _wireme. So a simple example would be the following:

Chapter 14 » Model Integration 218

<!--- Constructor Markers --->
<cffunction name="init" returntype="any" output="false">
 <cfargument name="dsn" type="any" _wireme="coldbox:datasource:myDSN" />
 <cfargument name="orm" type="transfer.com.Transfer" _wireme="ocm:Transfer" />
</cffunction>

<!--- Setter Markers --->
<cffunction name="setTransfer" type="transfer.com.Transfer" output="true"
 _wireme="ocm:transfer">
</cffunction>

As you can see, you use the argument or function marker: _wireme to tell the bean factory how to wire up
the argument or setter method. What is a bean factory? Well, that is the name of the object that does all
these creations and wirings, it is the plugin: BeanFactory. Now, if you do not like the default marker, then
you can choose your own. Just create a new setting in your ColdBox.XML.cfm named:
beanfactory_dslMarker.

<Setting name="beanFactory_dslMarker" value="wireit" />

<!--- Then use the wireit marker --->
<cffunction name="init" returntype="any" output="false">
 <cfargument name="dsn" type="any" wireit="coldbox:datasource:myDSN" />
 <cfargument name="transfer" type="transfer.com.Transfer" wireit="ocm" />
</cffunction>

Note: ColdBox 3.0.0 will be standardizing on the metadata markers it uses for model integration and
autowiring. At the time of writing of this book, the new standard to be used would be the metadata attribute
called: inject

If you do not place a metadata marker then ColdBox will check to see if you are using an IoC Framework
by looking at the IOCFramework setting. If the setting is used, then it will default the target type to ioc.
However, if no IoC Framework has been defined, then the default target type is model. This way, if you
know that you are injecting model objects or IoC objects, then just ignore the marker and it behaves like
ColdSpring setter or constructor injection.

Note: The marker is used only to demarcate using the DSL. If not using the DSL, then it will use the IoC
or model defaults accordingly.

As you can see from the previous samples, wiring up the constructor argument is fairly easy and very
descriptive. You are also not relying on inherited functionality or conflicting code, it is purely metadata that
can be ignored if using another factory other than ColdBox.

Chapter 14 » Model Integration 219

You have learned how to wire up the arguments of an object's constructor, now you will learn how to wire
up dependencies AFTER the object gets created. So if an object needs dependencies after creation (usually
the case), then just use our good old friend cfproperty to demarcate or annotate what needs to be injected.
The good thing is we just rely on unobtrusive metadata to define what needs to be injected and it can be
documented! It can be documented because many of the documentation creation libraries out there can
read a component’s properties and document them.

<!--- Autowire Properties --->
<cfproperty name="myMailSettings" type="ioc" scope="instance">

<cfproperty name="ColdBox" type="coldbox" scope="instance">

<cfproperty name="ModelsPath" type="coldbox:setting:ModelsPath"
 scope="instance">

<cfproperty name="Utilities" type="coldbox:plugin:Utilities"
 scope="instance">

<cfproperty name="ConfigBean" type="coldbox:configbean"
 scope="instance">

<cfproperty name="MailSettingsBean" type="coldbox:mailsettingsBean"
 scope="instance">

<cfproperty name="MySiteDSN" type="coldbox:datasource:mysite"
 scope="instance">

<cfproperty name="testModel" type="model"
 scope="instance">

<cfproperty name="initDate" type="model:formBean:getinitDate"
 scope="instance">

That is so nice. We can use this DSL to inject almost anything into our model objects. You might be saying
that if I have to give my model a name, what is it? Well it is the path from your model directory to your
CFC. Again, what if I refactor, I have to change all the references? The answer is no, we have model
mappings for that.

Just by creating a modelMappings.cfm in your config folder and calling a simple method from within it, you
can create model object aliases. What does this mean? It means you can create an alias name for your
object's instantiation path. This will help hide the true class path that can be so essential when refactoring or
changing the location of objects. I highly encourage you to do this:

Chapter 14 » Model Integration 220

 addModelMapping([alias=defaults to the last item in the path],path)

Argument Type Req Default Description

alias string false last part of the path A comma delimmitted list of aliases to match to a specific path.

path string true --- The instanatiation path of the model object

Remember that the path is the instantiation path from the model folder without the model folder and
without '.cfc'. That's it! Just call this method and create alias names for your model objects. What is also
much more extensible is that this configuration file is a ColdFusion template, so you can get funky and
dynamic. You can do if statements, get data from databases, anything you like.

<cfscript>
// Add all the model mappings you want
// addModelMapping(alias="",path="")
addModelMapping('MyFormBean','beans.formBean');

//Adding with a list of aliases
addModelMapping('SecurityService,Security,MySecurity','security.SecurityService'
);
</cfscript>

You can also get creative and even dynamically register all your model objects by doing a directory listing
and registering all found components. The example above means that you can call the formBean object
using the alias or the full path:

 Alias : getModel('MyFormBean')

 Full Path : getModel('beans.formBean')

Thanks to metadata and the ColdBox cache, you can use cache metadata attributes and persist your model
objects. You can create singletons, transients and even time expired model objects that can adjust to the
server's memory demands.

Note: At the time of the writing of this book, ColdBox 3.0.0 was under development and had implemented
a shorthand notation for singletons by just saying: singleton=”true” in the cfcomponent tag instead of what
you would see below.

Chapter 14 » Model Integration 221

<!--- Singleton: Lives for entire application time --->
<cfcomponent name="Model" cache="true" cacheTimeout="0">

<!--- Time Expired Object: Object lives for a max of the default cache object
 timeout in the cache settings --->
<cfcomponent name="Model" cache="true">

<!--- Time Expired Object: Object lives for a max of 30 minutes --->
<cfcomponent name="Model" cache="true" cacheTimeout="30">

<!--- Time Expired Object: Object lives for a max of 40 minutes, but if not used
 for the past 15 minutes expire it --->
<cfcomponent name="Model" cache="true" cacheTimeout="40"
cacheLastAccessTimeout="15">

<!--- Transient: Used on demand --->
<cfcomponent name="Model">

You can create incredible cache sensitive models, just by tapping into the ColdBox cache. What is also an
added benefit is that all model object's metadata are internally cached in a metadata dictionary. So creating
model objects, even transients, are FAST!

Important: Please remember that the ColdBox cache is based on a solid memory sensitive cache. So
objects that have timeouts are not guaranteed to live the entire length of the timeout because the JVM can
request memory and purge them for you. If this happens, the framework will re-cache the objects a second
time seamlessly for you. You do not have to worry about their persistence. It is all done for you.

This section shows a simple user service, gateway, user object and how to use them within a handler. Below
is a diagram of our model folder layout.

+ handlers

 + user.cfc

+ model

 + security

 + UserService.cfc

 + UserGateway.cfc

 + User.cfc

This is a snippet of the configuration file:

<Datasources>
 <Datasource alias="dsn" name="MySite" dbtype="mysql" />
</Datasources>

Chapter 14 » Model Integration 222

Some mappings are created so the CFCs can be referenced by an alias and not their class path:

//No alias is used, the alias will be the last part of the path.
addModelMapping(path='security.UserService');
addModelMapping(path='security.UserGateway');

This user service is a simple CFC that just has a gateway dependency for complex queries:

<!--- Cache of 0 = singleton --->
<cfcomponent name="UserService" output="true" cache="true" cacheTimeout="0">

<!--- Dependencies --->
<cfproperty name="UserGateway" type="model" scope="instance" />
<cfproperty name="SessionStorage" type="coldbox:plugin:sessionstorage"
 scope="instance" />

<cfscript>
instance = structnew();
</cfscript>

<cffunction name="init" output="false" returntype="UserService">
 <cfreturn this>
</cffunction>

<cffunction name="getAllUsers" output="false" access="public" returntype="query"
 hint="Returns all users in the database, active and inactive.">

<cfargument name="orderProperty" type="string" required="false"
 default=""/>
<cfargument name="orderASC" type="boolean" required="false"
 default="true" hint="Order ASC = true, DESC = false"/>

Chapter 14 » Model Integration 223

<cfscript>
var query = "";
query =
instance.UserGateway.findUsers(arguments.orderProperty,arguments.orderASC);

return query;
</cfscript>
</cffunction>

<cffunction name="authenticateUser" output="false" access="public"
 returntype="boolean" hint="Authenticate a User. If valid it places
 them in session. Returns true if user is valid and authenticated and
 ready for usage.">

<cfargument name="username" type="string" required="true"/>
<cfargument name="password" type="string" required="true"/>

<cfscript>
// Prepare results
var authenticated = false;
var oUser = "";

// Try to get user by credentials
oUser = getUserByCredentials(argumentCollection=arguments);

//Is User in system.
if (oUser.getIsPersisted()){
 //Save User State
 instance.sessionstorage.setVar('CurrentUser', oUser);
 //Set Return Flags
 authenticated = true;
}

return authenticated;
</cfscript>
</cffunction>

<!--- Get User By Credentials --->
<cffunction name="getUserByCredentials" output="false" access="public"
 returntype="User" hint="Returns an active/confirmed user by its
 credentials">

<cfargument name="username" type="string" required="true"/>
<cfargument name="password" type="string" required="true" hint="This argument is
 hashed internally."/>

<cfscript>
var oUser = "";
var sqlProps = structnew();

Chapter 14 » Model Integration 224

// prepare sqlProps
sqlProps.username = arguments.username;
sqlProps.password = hash(arguments.password,'SHA-512');
sqlProps.isConfirmed = 1;
sqlProps.isActive = 1;

// Create User
oUser = createObject("component","User").init();

// Try to get user now.
instance.userGateway.readByProperties(oUser,sqlProps);

return oUser;
</cfscript>
</cffunction>

<!--- Get A User Session --->
<cffunction name="getUserSession" output="false" access="public"
 returntype="User" hint="This method checks if a user is in an
 authorized session, else it returns the default user object.">
<cfscript>
var oUser = "";

//Is user in session
if (instance.sessionstorage.exists('CurrentUser')){
 oUser = instance.sessionstorage.getVar('CurrentUser');
}
else{
 oUser = createObject("component","User");
}

return oUser;
</cfscript>
</cffunction>

<!--- Clean a user's session. --->
<cffunction name="cleanUserSession" output="false" access="public"
 returntype="void" hint="This method will clean the user session.">
<cfscript>
instance.sessionstorage.deleteVar('CurrentUser');
</cfscript>
</cffunction>

</cfcomponent>

This user gateway is a simple CFC that does complex queries on the database for user operations. I
separated it into a gateway object, because I plan to have lots and lots of complex queries for users. If you
where doing simple queries or an ORM, maybe just having a service layer would suffice. Again, don't think

Chapter 14 » Model Integration 225

that everything needs a service-gateway combination and especially 1-1 relationships between tables and
objects. Remember that objects must have identity and service layers can manage several tables as long as
they provide cohesion and have well laid out responsibilities.

<!--- I will just lay out one method not all --->
<!--- Cache of 0 = singleton --->
<cfcomponent name="UserGateway" output="true" cache="true" cacheTimeout="0">

<!--- Dependencies --->
<cfproperty name="dsn" type="coldbox:datasource:dsn" scope="instance" />

<cfscript>
instance = structnew();
</cfscript>

<cffunction name="init" output="false" returntype="UserService">
 <cfreturn this>
</cffunction>

<cffunction name="getAllUsers" output="false" access="public" returntype="query"
 hint="Returns all users in the database, active and inactive.">

<cfargument name="orderProperty" type="string" required="false"
 default=""/>
<cfargument name="orderASC" type="boolean" required="false"
 default="true" hint="Order ASC = true, DESC = false"/>

<cfset var qUser = 0>

<cfquery name="qUser" datasource="#instance.dsn.getName()#">
select * from users
order by #arguments.orderProperty# #arguments.orderASC#
</cfquery>

<cfreturn qUser>

</cffunction>

</cfcomponent>

Chapter 14 » Model Integration 226

This is some handler code for a user handler.

<cfcomponent name="User" output="false" extends="coldbox.system.eventhandler"
 autowire="true">

<!--- Dependencies --->
<cfproperty name="UserService" type="Model" scope="instance" />

<cffunction name="list" output="false" returntype="void">
<cfargument name="event" type="any">
<cfscript>
var rc = event.getCollection();

//get all users
rc.qUsers = instance.UserService.getAllUsers();

//View
event.setView('users/list');
</cfscript>
</cffunction>

<cffunction name="login" output="false" returntype="void">
<cfargument name="event" type="any">
<cfscript>
event.setView("user/login");
</cfscript>
</cffunction>

<cffunction name="doLogin" output="false" returntype="void">
<cfargument name="event" type="any">
<cfscript>
//Authenticate
if(instance.UserService.authenticate(event.getValue("username",""),
 event.getValue("password",""))){
 setNextEvent('user.home');
}
else{
 getPlugin("messagebox").setMessage("warning",
 "Username and password not valid. Please try again");
 setNextEvent('user.login');
}
</cfscript>
</cffunction>

Chapter 14 » Model Integration 227

<cffunction name="doLogout" output="false" returntype="void">
<cfargument name="event" type="any">
<cfscript>
instance.UserService.cleanUserSession();
setNextEvent('user.login');
</cfscript>
</cffunction>

</cfcomponent>

The ColdBox model architecture leverages conventions, caching and a new dependency injection
mechanisms by using DSL markers that will take your development to new RAD (Rapid Application
Development) heights. Just by the fact that you can leverage conventions simplifies the wiring and creation
of model objects. Also, by having a rock solid caching engine behind your domain model objects, allows
you more granular control over objects that can make wise usage of system resources. Model integration is
still in its infancy and future versions of ColdBox will continue to break barriers and push this approach to
new heights. Enjoy and start building great domain models!

Chapter 14 » Model Integration 228

